scholarly journals Solar Panel Supplier Selection for the Photovoltaic System Design by Using Fuzzy Multi-Criteria Decision Making (MCDM) Approaches

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1989 ◽  
Author(s):  
Tien-Chin Wang ◽  
Su-Yuan Tsai

The period of industrialization and modernization has increased energy demands around the world. As with other countries, the Taiwanese government is trying to increase the proportion of renewable energy, especially solar energy resources. Thus, there are many solar power plants built in Taiwan. One of the most important components of a solar power plant is the solar panel. The solar panel supplier selection process is a complex and multi-faceted decision that can reduce the cost of purchasing equipment and supply this equipment on time. In this research, we propose fuzzy MCDM approach that includes fuzzy analytical hierarchy process model (FAHP) and data envelopment analysis (DEA) for evaluation and selection of solar panel supplier for a photovoltaic system design in Taiwan. The main objective of this work is to design a fuzzy MCDM approach for solar panel supplier selection based on qualitative and quantitative factors. In the first step of this research, FAHP is applied to define the priority of suppliers. The AHP combined with fuzzy logic (FAHP) can be used to rank suppliers; however, the disadvantages of the FAHP model is that input data, expressed in linguistic terms, depends on experience of experts and the number of suppliers is practically limited, because of the number of pairwise comparison matrices. Thus, we applied several DEA models for ranking potential suppliers in the final stages. As the result, decision making unit 1 (DMU 1) is the optimal solar panel supplier for photovoltaic system design in Taiwan. The contribution of this research is a new fuzzy MCDM for supplier selection under fuzzy environment conditions. This paper also lies in the evolution of a new approach that is flexible and practical to the decision maker. It provides a useful guideline for solar panel supplier selection in many countries as well as a guideline for supplier selection in other industries.

Processes ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 252 ◽  
Author(s):  
Chia-Nan Wang ◽  
Ying-Fang Huang ◽  
I-Fang Cheng ◽  
Van Nguyen

Suppliers are extremely important in business operations. The supplier ensures the supply of materials, raw materials, commodities, etc. in sufficient quantity, quality, stability, and accuracy to meet the requirements of production and business with low costs and on-time deliveries. Therefore, selecting and managing good suppliers is a prerequisite for organizing the production of quality products as desired, according to the schedule, and with reasonable prices and competitiveness in the market. It is also important to gain the support of suppliers in order to continue to improve and achieve more as a business. The evaluation and selection of a supplier is a Multi-Criteria Decision-Making (MCDM) issue, in which the decision-maker is faced with both qualitative and quantitative factors. In this research, the authors propose an MCDM model using a hybrid of Supply Chain Operations Reference metrics (SCOR metrics), the Analytic Hierarchy Process (AHP) model, and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) approach for supplier evaluation and selection in the gas and oil industry. Using literature reviews on SCOR metrics, all criteria that impact supplier selection are defined in the first stage, the AHP model is applied to determine the weight of each factor in the second stage, and the optimal supplier is presented in final stage using the TOPSIS model. As a result, Decision-Making Unit 5 (DMU-05) is found to be the best supplier for the gas and oil industry in this research. The contribution of this work is to propose a new hybrid MCDM model for supplier selection in the gas and oil industry. This research also introduces a useful tool for supplier selection in other industries.


2019 ◽  
Vol 8 (1) ◽  
pp. 15 ◽  
Author(s):  
Roghayeh Ghasempour ◽  
Mohammad Alhuyi Nazari ◽  
Morteza Ebrahimi ◽  
Mohammad Hossein Ahmadi ◽  
H. Hadiyanto

Renewable energies have many advantages and their importance is rising owing to gravely mounting concerns for environmental issues and lack of fossil fuels in the future. Solar energy, well acknowledged as an inexhaustible source of energy, is developing dramatically for different purposes such as desalination and electricity generation. Appropriate solar power plant is very important factor for power generation due to its cost and other constraints. The applied technology is as important as the solar power plants location.  In this paper, a wide variety multi criteria decision making (MCDM) methods, investigated by various researchers, are presented to obtain effective criteria in selecting solar plants sites and solar plants technologies. There is not any comprehensive research providing all required criteria for decision making for site and technology selection. Based on the reviewed researches, weight of each criterion depends on many factors such as region, economy, accessibility, power network, maintenance costs, operating costs, etc. The important criteria for site selection are represented and investigated thoroughly in this review paper.© 2019. CBIORE-IJRED. All rights reservedArticle History: Received June 17th 2017; Received in revised form March 7th 2018; Accepted June 16th 2018; Available onlineHow to Cite This Article: Ghasempour, R., Nazari, M.A., Ebrahimi, M., Ahmadi, M.H. and Hadiyanto, H. (2019) Multi-Criteria Decision Making (MCDM ) Approach for Selecting Solar Plants Site and Technology: A Review. Int Journal of Renewable Energy Development, 8(1), 15-25.https://doi.org/10.14710/ijred.8.1.15-25


Kilat ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 115-124
Author(s):  
Tri Joko Pramono ◽  
Erlina Erlina ◽  
Zainal Arifin ◽  
Jef Saragih

Solar Power Plant is one of the New Renewable Energy power plants. Solar panels can produce unlimited amounts of electrical energy directly taken from the sun, with no rotating parts and no fuel. In this study are optimize solar power plants using hybrid systems with electricity companies and the use of semi-transparent solar panels in high rise buildings to meet the burden of the building. The research will discussed about use of solar power plants using semi-transparent solar panels in multi-storey buildings. The solar panel used for the facade is a semi-transparent solar panel makes its function become two, that is to produce electrical energy as well as glass through which sunlight and can see the view outside the building without reducing the building's aesthetic value. In this study is the value of solar radiation taken from west is the lowest value in November 1.4 Kwh can produce energy PLTS 3,855 Kwh and the highest solar radiation in July amounted to 3.75 Kwh can produce energy PLTS 10.331 Kwh. From the utilization of this PLTS system, Performance Ratio of 85% was obtained using study of 36 panels on the 3rd to 5th floors, this system can be said to feasible.  


2017 ◽  
Vol 5 (1) ◽  
Author(s):  
I Gusti Lanang Yoga Rafsandita ◽  
Gede Widayana ◽  
I Wayan Sutaya

Indonesia merupakan negara yang memiliki berbagai jenis sumber daya energi dalam jumlah yang cukup melimpah. Wilayah Indonesia akan selalu disinari matahari selama 10 - 12 jam dalam sehari. Data Dirjen Listrik dan Pengembangan Energi pada tahun 1997, kapasitas terpasang listrik tenaga surya di Indonesia mencapai 0,88 MW dari potensi yang tersedia 1,2 x 109 MW. Kebanyakan panel surya dipasang permanen dengan sudut elevasi yang tetap (fixed elevating angles). Hal ini menyebabkan panel surya tersebut tidak dapat menyerap radiasi matahari secara optimal. Penyerapan radiasi matahari akan optimal jika arah radiasi matahari tegak lurus terhadap permukaan bidang panel surya. Penulis tertarik untuk merancang dan membuat alat yang dapat dipergunakan untuk menempelkan panel sel surya tetap dalam kondisi intensitas matahari yang maksimum. Dalam hal ini, menggunakan satu sumbu. dengan telah dibuatnya alat penggerak mekanik satu sumbu pada solar panel ini, penulis dapat memberikan gambaran tentang pembangkit listrik tenaga surya kepada masyarakat. Selain itu dengan adanya penggerak mekanik pada solar panel ini, solar panel bisa lebih besar menghasilkan tegangan pada baterai daripada solar panel tanpa penggerak. Dan dari percobaan menggunakan penggerak mekanik satu sumbu ini menghasilkan tegangan di pukul 08.00 pada baterai nominal sebesar 2,04V hari pertama, 2,05V hari kedua dan 2,03V hari ketiga dan di akhir perhitungan pukul 16.00 tegangan pada baterai menujukan nominal sebesar 11,18V hari pertama, 11,27V hari kedua dan 11,3V hari ketiga.Kata Kunci : Solar Panel, Tipe BCT30-12, Penggerak Satu Sumbu Indonesia is a country that has different kinds of energy resources in sufficient quantities abundant. then Indonesia will be always exposed to the sun for 10-12 hours a day. Data Director General of Electricity and Energy Development in 1997, the installed capacity of solar power in Indonesia reached 0.88 MW of the available potential of 1.2 x 109 MW. Most solar panels are installed permanently at a fixed elevation angle (fixed elevating angles). This causes the solar panels can not absorb solar radiation optimally. Absorption of solar radiation would be optimal if the solar radiation direction perpendicular to the surface of solar panel field. Writers interested in designing and creating tools that can be used to attach the solar panels remain in a state of maximum intensity of the sun. In this case, using a single axis. to have made a mechanical actuator on the solar panel one axis, the author can give an idea of solar power plants to the public. In addition to the mechanical drive on the solar panels, the solar panels generate voltage can be larger than the solar panel to the battery without driving. And from experiments using mechanical drive one axis produces a voltage at 08.00 at a total nominal battery 2,04V first day, 2,05V 2,03V second day and third day and at the end of the calculation 16.00 nominal voltage of the battery addressed by 11,18V the first day, 11,27V 11,3V second day and third day.keyword : Solar Panel, Type BCT30-12, Activator One Wick


Author(s):  
Nurullah UMARUSMAN ◽  
Turgut Hacıvelioğulları

Most instances like developing technology, scarce sources, and global warming have brought about an ongoing perspective with Sustainable SCM and Green SCM starting from Traditional SCM. Supplier selection in all these processes is a decision-making process playing a significant role in the success of enterprises. The most critical point in this decision-making process is the criteria used in the supplier selection process because they directly affect the selection of supplier that is appropriate for the strategy of the enterprise. In this chapter, the optimal quantity of products to be purchased from suppliers were determined through a solution offer that authors named as compromise optimal system design. For the recommended solution, first, a new model was introduced by arranging Multiobjective Supplier Selection problem based on the De Novo assumption, and then Compromise Programming was used for the solution of this model. The developed solution procedure was used to determine the amount of blending machine to be purchased from the green supplier of a milling machine manufacturer.


2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Hava Nikfarjam ◽  
Mohsen Rostamy-Malkhalifeh ◽  
Abbasali Noura

Supplier selection is one of the intricate decisions of managers in modern business era. There are different methods and techniques for supplier selection. Data envelopment analysis (DEA) is a popular decision-making method that can be used for this purpose. In this paper, a new dynamic DEA approach is proposed which is capable of evaluating the suppliers in consecutive periods based on their inputs, outputs, and the relationships between the periods classified as desirable relationships, undesirable relationships, and free relationships with positive and negative natures. To this aim various social, economic, and environmental criteria are taken into account. A new method for constructing an ideal decision-making unit (DMU) is proposed in this paper which differs from the existing ones in the literature according to its capability of considering periods with unit efficiencies which do not necessarily belong to a unique DMU. Furthermore, the new ideal DMU has the required ability to rank the suppliers with the same efficiency ratio. In the concerned problem, the supplier that has unit efficiency in each period is selected to construct an ideal supplier. Since it is possible to have more than one supplier with unit efficiency in each period, the ideal supplier can be made with different scenarios with a given probability. To deal with such uncertain condition, a new robust dynamic DEA model is elaborated based on a scenario-based robust optimization approach. Computational results indicate that the proposed robust optimization approach can evaluate and rank the suppliers with unit efficiencies which could not be ranked previously. Furthermore, the proposed ideal DMU can be appropriately used as a benchmark for other DMUs to adjust the probable improvement plans.


2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Shabeer Khan ◽  
Saleem Abdullah ◽  
Shahzaib Ashraf ◽  
Ronnason Chinram ◽  
Samruam Baupradist

The problem of energy crisis and environmental pollution has been mitigated by the generation and use of solar power; however, the choice of locations for solar power plants is a difficult task because the decision-making process includes political, socio-economic, and environmental aspects. Thus, several adverse consequences have been created by the choice of suboptimal locations. The objective of this paper is to address the integrated qualitative and quantitative multicriteria decision-making framework for the selection of solar power plant locations. Neutrosophic sets (NSs) are the latest extension of the ordinary fuzzy sets. The main characteristic of the neutrosophic sets is satisfying the condition that the sum of the truth, indeterminacy, and falsity grades must be at least zero and at most three. In this research, we establish novel operational laws based on the Yager t-norm and t-conorm under neutrosophic environments (NE). Furthermore, based on these Yager operational laws, we develop a list of novel aggregation operators under NE. In addition, we design an algorithm to tackle the uncertainty to investigating the best solar power plant selection in five potential locations in Pakistan. A numerical example of solar power plant location problem is considered to show the supremacy and effectiveness of the proposed study. Also, a detailed comparison is constructed to evaluate the performance and validity of the established technique.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 417 ◽  
Author(s):  
Chia-Nan Wang ◽  
Ching-Yu Yang ◽  
Hung-Chun Cheng

In order to meet ambitious growth targets in the medium term, Vietnam must continue exploiting traditional energy sources. In the longer term, Vietnam has to develop a strategy and roadmap for the development of new energy sources. In these new energy sources, wind energy has emerged as a viable option. Given the geographic conditions of a locality with a long coastline and high winds that are fairly distributed all year, many wind-power plants are being built in Vietnam. One of the most important pieces of equipment in a wind-power plant is the wind turbine. The wind turbine suppliers’ selection is a complex and multicriteria decision-making (MCDM) process that can reduce the costs of procuring equipment and aid in receiving products on time. Many studies have applied the MCDM model to various fields of science and engineering. One of the fields that the MCDM approaches have been applied to is the supplier selection problem. Supplier selection is an important issue of the MCDM model. Especially in a renewable energy project, decision-makers have to evaluate both natural and society factors. Although some researchers have reviewed the applications of the MCDM model in wind turbine supplier selection, limited work has focused on this problem in a fuzzy environment. Therefore, in this work, the authors propose a fuzzy MCDM model for the wind turbine supplier selection process under fuzzy environment conditions. In the first step, all factors for wind turbine supplier selection are identified by supply chain operations reference (SCOR) metrics and the results from a review of the literature. A fuzzy analytic network process (FANP) model is applied for determining the weight of all the criteria in the second stage, and the technique for order preference by similarity to an ideal solution (TOPSIS) model is used to rank all the potential suppliers in the final stage. As a result, Decision-Making Unit 010 (DMU010) becomes an optimal option for the wind turbine supplier selection processes. The contribution of this research is to develop new hybrid fuzzy MCDM approaches for wind turbine supplier selections. Furthermore, this work presents useful guidelines for wind turbines as well as provides a guideline for supplier selection in other industries.


Sign in / Sign up

Export Citation Format

Share Document