scholarly journals Energy Efficient Design of Massive MIMO Based on Closely Spaced Antennas: Mutual Coupling Effect

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2029 ◽  
Author(s):  
Peerapong Uthansakul ◽  
Arfat Ahmad Khan ◽  
Monthippa Uthansakul ◽  
Pumin Duangmanee

Massive Multiple Input Multiple Output MIMO technology is a promising candidate for the next generation of communication applications, which essentially group hundreds of transmitting antennas together at the base station and provides the higher energy and spectral efficiency. In this article, the transmitting antennas are assumed to be closely spaced at the base station, which in turn results into a mutual coupling effect between the antenna terminals. The optimal system parameters and the energy efficiency are computed by considering the mutual coupling effect between the antenna terminals. Mutual coupling effect is deeply investigated on the energy efficiency and the other optimal parameters. We propose the domain splitter algorithm for the optimization of energy efficiency and the computation of different optimal system parameters in this article. The computational complexity of the proposed domain splitter algorithm is not dependent on the number of transceiver chains, and the detailed comparison is presented between the proposed and the reference algorithms on the basis of the computational complexity, which shows the effectiveness of the proposed domain splitter algorithm.

Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4356
Author(s):  
Peerapong Uthansakul ◽  
Arfat Ahmad Khan

Hybrid architectures are used in the Millimeter wave (mmWave) Massive MIMO systems, which use a smaller number of RF chains and reduces the power and energy consumption of the mmWave Massive MIMO systems. However, the majority of the hybrid architectures employs the conventional circuit configuration by connecting each of the RF chains with all the transmitting antennas at the base station. As a result, the conventional circuit configuration requires a large number of phase shifters, combiners, and low-end amplifiers. In this paper, we modify the RF circuit configuration by connecting each of the RF chains with some of the transmitting antennas of mmWave Massive MIMO. Furthermore, the hybrid analogue/digital precoders and decoders along with the overall circuit power consumptions are modelled for the modified RF circuit configuration. In addition, we propose the alternating optimization algorithm to enhance the optimal energy efficiency and compute the optimal system parameters of the mmWave Massive MIMO system. The proposed framework provides deeper insights of the optimal system parameters in terms of throughput, consumed power and the corresponding energy efficiency. Finally, the simulation results validate the proposed framework, where it can be seen that the proposed algorithm significantly reduces the power and energy consumptions, with a little compromise on the system spectral gain.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jing Gao ◽  
Qing Ren ◽  
Pei Shang Gu ◽  
Xin Song

The widespread application of wireless mobile services and requirements of ubiquitous access have resulted in drastic growth of the mobile traffic and huge energy consumption in ultradense networks (UDNs). Therefore, energy-efficient design is very important and is becoming an inevitable trend. To improve the energy efficiency (EE) of UDNs, we present a joint optimization method considering user association and small-cell base station (SBS) on/off strategies in UDNs. The problem is formulated as a nonconvex nonlinear programming problem and is then decomposed into two subproblems: user association and SBS on/off strategies. In the user association strategy, users associate with base stations (BSs) according to their movement speeds and utility function values, under the constraints of the signal-to-interference ratio (SINR) and load balancing. In particular, taking care of user mobility, users are associated if their speed exceeds a certain threshold. The macrocell base station (MBS) considers user mobility, which prevents frequent switching between users and SBSs. In the SBS on/off strategy, SBSs are turned off according to their loads and the amount of time required for mobile users to arrive at a given SBS to further improve network energy efficiency. By turning off SBSs, negative impacts on user associations can be reduced. The simulation results show that relative to conventional algorithms, the proposed scheme achieves energy efficiency performance enhancements.


Author(s):  
BHUSHAN R. KALAMKAR ◽  
SACHIN S. KHADE ◽  
B.L. BADJATE

To reduce mutual coupling effect on MIMO Antenna this paper presents the analysis of bent ground plane antennas for multiple-input-multiple-output (MIMO). First, the three plate antenna array patterns of the envelope correlation coefficients are proposed to evaluate the diversity performance of antennas in MIMO systems. Following this, a compact three-element suspended plate antenna array with a bent ground plane is presented. The diversity performance of the design is experimentally and numerically analysed.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Mohammed H. Alsharif ◽  
Rosdiadee Nordin ◽  
Mahamod Ismail

Energy efficiency in cellular networks has received significant attention from both academia and industry because of the importance of reducing the operational expenditures and maintaining the profitability of cellular networks, in addition to making these networks “greener.” Because the base station is the primary energy consumer in the network, efforts have been made to study base station energy consumption and to find ways to improve energy efficiency. In this paper, we present a brief review of the techniques that have been used recently to improve energy efficiency, such as energy-efficient power amplifier techniques, time-domain techniques, cell switching, management of the physical layer through multiple-input multiple-output (MIMO) management, heterogeneous network architectures based on Micro-Pico-Femtocells, cell zooming, and relay techniques. In addition, this paper discusses the advantages and disadvantages of each technique to contribute to a better understanding of each of the techniques and thereby offer clear insights to researchers about how to choose the best ways to reduce energy consumption in future green radio networks.


2016 ◽  
Vol 7 (2) ◽  
pp. 77-83 ◽  
Author(s):  
Cs. Szász ◽  
R. Şinca

This paper deals with the most recent technology in wireless communication which is massive multiple input multiple output system. The paper studies the performance of massive multiple input multiple output uplink system over Rayleigh fading channel. The performance is measured in terms of spectral and energy efficiency using three schemes of linear detection, maximum-ratio-combining, zero forcing receiver, and minimum mean-square error receiver. The simulation results show that the spectral and energy efficiency increases with increasing the number of base station antennas. Also, the spectral and energy efficiency with minimum mean-square error receiver is better than that withzero forcing receiver, and the latter is better than that with maximum-ratio-combining. Furthermore, the energy efficiency decreases with increasing the spectral efficiency.


Author(s):  
Ashu Taneja ◽  
Nitin Saluja

Background: The paper considers the wireless system with large number of users (more than 50 users) and each user is assigned large number of antennas (around 200) at the Base Station (BS). Objective: The challenges associated with the defined system are increased power consumption and high complexity of associated circuitry. The antenna selection is introduced to combat these problems while the usage of linear precoding reduces computational complexity. The literature suggests number of antenna selection techniques based on statistical properties of signal. However, each antenna selection technique suits well to specific number of users. Methods: In this paper, the random antenna selection is compared with norm-based antenna selection. It is analysed that the random antenna selection leads to inefficient spectral efficiency if the number of users are more than 50 in Multi-User Multiple-Input Multiple Output (MU-MIMO) system. Results: The paper proposes the optimization of Energy-Efficiency (EE) with random transmit antenna selection for large number of users in MU-MIMO systems. Conclusion: Also the computation leads to optimization of number of transmit antennas at the BS for energy efficiency. The proposed algorithm results in improvement of the energy efficiency by 27% for more than 50 users.


Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1145
Author(s):  
Bin Jiang ◽  
Linbo Qu ◽  
Yufei Huang ◽  
Yifei Zheng ◽  
Li You ◽  
...  

Herein, we focus on energy efficiency optimization for massive multiple-input multiple-output (MIMO) downlink secure multicast transmission exploiting statistical channel state information (CSI). Privacy engineering in the field of communication is a hot issue under study. The common signal transmitted by the base station is multicast transmitted to multiple legitimate user terminals in our system, but an eavesdropper might eavesdrop this signal. To achieve the energy efficiency utility–privacy trade-off of multicast transmission, we set up the problem of maximizing the energy efficiency which is defined as the ratio of the secure transmit rate to the power consumption. To simplify the formulated nonconvex problem, we use a lower bound of the secure multicast rate as the molecule of the design objective. We then obtain the eigenvector of the optimal transmit covariance matrix into a closed-form, simplifying the matrix-valued multicast transmission strategy problem into a power allocation problem in the beam domain. By utilizing the Minorize-Maximize method, an iterative algorithm is proposed to decompose the secure energy efficiency optimization problem into a sequence of iterative fractional programming subproblems. By using Dinkelbach’s transform, each subproblem becomes an iterative problem with the concave objective function, and it can be solved by classical convex optimization. We guarantee the convergence of the two-level iterative algorithm that we propose. Besides, we reduce the computational complexity of the algorithm by substituting the design objective with its deterministic equivalent. The numerical results show that the approach we propose performs well compared with the conventional methods.


Author(s):  
M. F. Ismail ◽  
H. A. Majid ◽  
C. Macwright ◽  
M. N. A. H. Shaabani ◽  
M. S. Mohd ◽  
...  

A study on the compact array microstrip patch antenna for multiple-input multiple-output (MIMO) communication system based on the antenna arrangement is performed. The 2.45 GHz rectangular array are arranged in 45 degree slanted inward and outward for each other to reduce the mutual coupling effect between the patches. The antenna properties are analyzed and compact antenna design is determined based on the simulation results. The results show the antennas can very compact while maintaining low mutual coupling. The gain of the MIMO antenna is 11.3 dBi. The simulated and tested return losses, together with the radiation patterns, are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document