scholarly journals Study on the Combustion Process of Premixed Methane Flames with CO2 Dilution at Elevated Pressures

Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 348 ◽  
Author(s):  
Rafał Ślefarski

The article presents the results of experimental and numerical investigation of turbulent premixed methane flames diluted by carbon dioxide (up to 30%) at atmospheric and elevated pressures (up to 0.5 MPa). The study included the influence of fuel properties and operation parameters on the emission of NOx and CO as well as flame properties. The investigation has been prepared for two combustion system configurations (axisymmetric flames and flames supported by a pilot flame) in a wide range of air/fuel equivalence ratios (ϕ = 0.42 ÷ 0.85). It has been reported that reduction of NOx emission by CO2 fuel dilution reached a level of up to 45% in atmospheric conditions and 30% at elevated pressure, decreasing with a drop in the equivalence ratio. The results have shown influence of pressure on NOx composition, where for pressurized tests, NO2 was doubled compared to atmospheric tests. Carbon monoxide emission rises with CO2 content in the fuel as a result of thermal dissociation, but this phenomenon is mitigated by a pressure increase. Planar laser induced fluorescence (PLIF) study has shown that flame length decreases with an increase in pressure and CO2 content in the fuel. Fuel staging increased NOx emission, especially for richer flames (ϕ > 0.6) at low pressure, while CO increased in the whole range of equivalence ratios.

Author(s):  
Fuqiang Liu ◽  
Yong Mu ◽  
Cunxi Liu ◽  
Jinhu Yang ◽  
Yanhui Mao ◽  
...  

The low NOX emission technology has become an important feature of advanced aviation engine. A wide range of applications attempt to take advantage of the fact that staged combustion operating under lean-premixed-prevaporized (LPP) conditions can significantly decrease pollution emissions and improve combustion efficiency. In this paper a scheme with fuel centrally staged and multi-point injection is proposed. The mixing of fuel and air is improved, and the flame temperature is typically low in combustion zone, minimizing the formation of nitrogen oxides (NOX), especially thermal NOX. In terms of the field distribution of equivalence ratio and temperature obtained from Computational Fluid Dynamics (CFD), a chemical reactor network (CRN), including several different ideal reactor, namely perfectly stirred reactor (PSR) and plug flow reactor (PFR), is constructed to simulate the combustion process. The influences of the pilot equivalence ratio and percentage of pilot/main fuel on NOX and carbon monoxide (CO) emissions were studied by Chemical CRN model. Then the NOX emission in the staged combustor was researched experimentally. The effects of the amount of pilot fuel and primary fuel on pollution emissions were obtained by using gas analyzer. Finally, the effects of pilot fuel proportion on NOX emission were discussed in detail by comparing predicts of CRN and experimental results.


Author(s):  
Umesh Bhayaraju ◽  
Mahmoud Hamza ◽  
San-Mou Jeng

The Combustion and Fire Research Laboratory (CFRL) at the University of Cincinnati (UC) is working on the development of advanced next generation injectors for DLN combustors. Several inputs were received from the project partners during the development phase. In the present paper, developmental work on two novel injectors with Porous Injection Technology (PIT) is presented. The technology has the potential to reduce NOx emissions to single digit PPM level with a stable combustion across wide range of load conditions. One of the key factors that are essential for lowering NOx levels is the efficient mixing of fuel-air in both spatial and temporal domains. The porous injection technology has the potential to reduce the spatial and temporal gradients to a minimum. In the present paper, two measurement techniques were used to evaluate the fuel-air mixing under atmospheric conditions. The CO2 mixing technique was used to quantify the spatial variations in the fuel mass fraction. Planar Laser Induced Fluorescence (PLIF) was used to obtain both spatial and temporal fuel mass fractions. The CO2 mixing measurements were used to validate the PLIF data for quantification. The RMS fluctuations in spatial and temporal domains were quantified from PLIF data. The combustion experiments were carried out at atmospheric pressure with a preheated temperature of air of 500–650 K and equivalence ratio of 0.5–0.8. The pressure drop across the injector was 4%. Natural gas with 90% methane and 9% ethane was used as fuel. The results show a stable flame for both injectors without combustion instabilities. Both injectors show low NOx levels. For conventional swirl stabilized design with PIT, the NOx levels were of the order of 1.5 ppm at the firing temperature of 1866 K whereas for the novel micromixer design, the NOx levels were of the order of 4 ppm @ ∼1866 K.


2020 ◽  
Vol 61 (12) ◽  
Author(s):  
I. A. Sofia Larsson ◽  
Henrik Lycksam ◽  
T. Staffan Lundström ◽  
B. Daniel Marjavaara

Abstract Confined, turbulent, coaxial jets in a non-axisymmetric co-flow are studied using particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) simultaneously. Eight different cases are measured. Two momentum flow ratios of the co-flow are used in the experiment to investigate the effect on the coaxial burner jet behavior and mixing characteristics of the coaxial jet flow and the co-flowing, secondary fluid. In addition, four different momentum flow ratios of the coaxial outer to inner jet are investigated. The objective of the study is to get a deeper understanding of how the flow dynamics affects the entrainment and mixing process in a coaxial jet with a non-axisymmetric, surrounding co-flow. The results show that the introduction of a coaxial stream affects the inner jet and decreases the mixing with the surrounding co-flow; the effect is enhanced as the momentum flow ratio of the coaxial jet increases. The distribution of the secondary, co-flowing fluid controls the shape and direction of the coaxial jet, but does not have a significant impact on the mixing process near the centerline. Practical implications of this investigation are related to the possibility to better control a diffusion flame by introducing a coaxial stream. In this context it is concluded that it is possible to affect the jet development and hence the flame length. The conclusion is based on the assumption that the outer, coaxial stream has a low mass flow, not enough to provide complete combustion, and hence the co-flowing, secondary fluid provides the air needed for the combustion process. Graphic abstract


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5745
Author(s):  
Sang-Min Kim ◽  
Kyeong-Soo Han ◽  
Seung-Wook Baek

The aim of this research is to investigate the effects of a direct current (DC) electric field on the combustion behavior of a co-flow propane diffusion flame. The flame length and NOx emission were observed and measured. The electric field enhances the combustion process of propane diffusion flame by causing the movement of ions and molecules in the flame, resulting in a change in the shape of the flame. The flame heights decrease with an increase in the applied voltage and polarity, a more dominant effect to be observed with a positive DC electric field. However, for the applied negative polarity, the inner-cone of the propane diffusion flame is shifted by the electric field. Drastic reduction in the NOx emission is observed with an increase in the applied DC voltage and polarity. In the existing system, the reduction percentage of NOx is within the range of 55 to 78%.


2020 ◽  
Vol 1008 ◽  
pp. 128-138
Author(s):  
Ahmed M. Salman ◽  
Ibrahim A. Ibrahim ◽  
Hamada M. Gad ◽  
Tharwat M. Farag

In the present study, the combustion characteristics of LPG gaseous fuel diffusion flame at elevated air temperatures were experimentally investigated. An experimental test rig was manufactured to examine a wide range of operating conditions. The investigated parameters are the air temperatures of 300, 350, 400, 450, and 500 K with constant percentage of nitrogen addition in combustion air stream of 5 % to give low oxygen concentration of 18.3 % by mass at constant air swirl number, air to fuel mass ratio, and thermal load of 1.5, 30, and 23 kW, respectively. The gaseous combustion characteristics were represented as axial and radial temperatures distributions, temperatures gradient, visible flame length and species concentrations. The results indicated that as the air temperature increased, the chemical reaction rate increased and flame volume decreased, the combustion time reduced leading to a reduction in flame length. The NO concentration reaches its maximum values near the location of the maximum centerline axial temperature. Increasing the combustion air temperature by 200 K, the NO consequently O2 concentrations are increased by about % 355 and 20 % respectively, while CO2 and CO concentrations are decreased by about % 21 and 99 % respectively, at the combustor end.


Author(s):  
Mirko Baratta ◽  
Stefano d’Ambrosio ◽  
Daniela Misul ◽  
Ezio Spessa

An experimental investigation and a burning-rate analysis have been performed on a production 1.4 liter CNG (compressed natural gas) engine fueled with methane-hydrogen blends. The engine features a pent-roof combustion chamber, four valves per cylinder and a centrally located spark plug. The experimental tests have been carried out in order to quantify the cycle-to-cycle and the cylinder-to-cylinder combustion variation. Therefore, the engine has been equipped with four dedicated piezoelectric pressure transducers placed on each cylinder and located by the spark plug. At each test point, in-cylinder pressure, fuel consumption, induced air mass flow rate, pressure and temperature at different locations on the engine intake and exhaust systems as well as ‘engine-out’ pollutant emissions have been measured. The signals correlated to the engine operation have been acquired by means of a National Instruments PXI-DAQ system and a home developed software. The acquired data have then been processed through a combustion diagnostic tool resulting from the integration of an original multizone thermodynamic model with a CAD procedure for the evaluation of the burned-gas front geometry. The diagnostic tool allows the burning velocities to be computed. The tests have been performed over a wide range of engine speeds, loads and relative air-fuel ratios (up to the lean operation). For stoichiometric operation, the addition of hydrogen to CNG has produced a bsfc reduction ranging between 2 to 7% and a bsTHC decrease up to the 40%. These benefits have appeared to be even higher for lean mixtures. Moreover, hydrogen has shown to significantly enhance the combustion process, thus leading to a sensibly lower cycle-to-cycle variability. As a matter of fact, hydrogen addition has generally resulted into extended operation up to RAFR = 1.8. Still, a discrepancy in the abovementioned conclusions was observed depending on the engine cylinder considered.


Author(s):  
Dominik Ebi ◽  
Peter Jansohn

Abstract Operating stationary gas turbines on hydrogen-rich fuels offers a pathway to significantly reduce greenhouse gas emissions in the power generation sector. A key challenge in the design of lean-premixed burners, which are flexible in terms of the amount of hydrogen in the fuel across a wide range and still adhere to the required emissions levels, is to prevent flame flashback. However, systematic investigations on flashback at gas turbine relevant conditions to support combustor development are sparse. The current work addresses the need for an improved understanding with an experimental study on boundary layer flashback in a generic swirl burner up to 7.5 bar and 300° C preheat temperature. Methane-hydrogen-air flames with 50 to 85% hydrogen by volume were investigated. High-speed imaging was applied to reveal the flame propagation pathway during flashback events. Flashback limits are reported in terms of the equivalence ratio for a given pressure, preheat temperature, bulk flow velocity and hydrogen content. The wall temperature of the center body along which the flame propagated during flashback events has been controlled by an oil heating/cooling system. This way, the effect any of the control parameters, e.g. pressure, had on the flashback limit was de-coupled from the otherwise inherently associated change in heat load on the wall and thus change in wall temperature. The results show that the preheat temperature has a weaker effect on the flashback propensity than expected. Increasing the pressure from atmospheric conditions to 2.5 bar strongly increases the flashback risk, but hardly affects the flashback limit beyond 2.5 bar.


2021 ◽  
Author(s):  
James Harding

<p>Earth Observation (EO) satellites are drawing considerable attention in areas of water resource management, given their potential to provide unprecedented information on the condition of aquatic ecosystems. Despite ocean colours long history; water quality parameter retrievals from shallow and inland waters remains a complex undertaking. Consistent, cross-mission retrievals of the primary optical parameters using state-of-the-art algorithms are limited by the added optical complexity of these waters. Less work has acknowledged their non- or weakly optical parameter counterparts. These can be more informative than their vivid counterparts, their potential covariance would be regionally specific. Here, we introduce a multi-input, multi-output Mixture Density Network (MDN), that largely outperforms existing algorithms when applied across different bio-optical regimes in shallow and inland water bodies. The model is trained and validated using a sizeable historical database in excess of 1,000,000 samples across 38 optical and non-optical parameters, spanning 20 years across 500 surface waters in Scotland. The single network learns to predict concurrently Chlorophyll-a, Colour, Turbidity, pH, Calcium, Total Phosphorous, Total Organic Carbon, Temperature, Dissolved Oxygen and Suspended Solids from real Landsat 7, Landsat 8, and Sentinel 2 spectra. The MDN is found to fully preserve the covariances of the optical and non-optical parameters, while known one-to-many mappings within the non-optical parameters are retained. Initial performance evaluations suggest significant improvements in Chl-a retrievals from existing state-of-the-art algorithms. MDNs characteristically provide a means of quantifying the noise variance around a prediction for a given input, now pertaining to real data under a wide range of atmospheric conditions. We find this to be informative for example in detecting outlier pixels such as clouds, and may similarly be used to guide or inform future work in academic or industrial contexts. </p>


2001 ◽  
Author(s):  
Qing Jiang ◽  
Chao Zhang

Abstract A study of the nitrogen oxides (NOx) emission and combustion process in a gas-fired regenerative, high temperature, low emission industrial furnace has been carried out numerically. The effect of two additives, methanol (CH3OH) and hydrogen peroxide (H2O2), to fuel on the NOx emission has been studied. A moment closure method with the assumed β probability density function (PDF) for mixture fraction is used in the present work to model the turbulent non-premixed combustion process in the furnace. The combustion model is based on the assumption of instantaneous full chemical equilibrium. The results showed that CH3OH is effective in the reduction of NOx in a regenerative industrial furnace. However, H2O2 has no significant effect on the NOx emission.


2021 ◽  
Author(s):  
Brian J. Carroll ◽  
Amin R. Nehrir ◽  
Susan Kooi ◽  
James Collins ◽  
Rory A. Barton-Grimley ◽  
...  

Abstract. Airborne differential absorption lidar (DIAL) offers a uniquely capable solution to the problem of measuring water vapor (WV) with high precision, accuracy, and resolution throughout the troposphere and lower stratosphere. The High Altitude Lidar Observatory (HALO) airborne WV DIAL was recently developed at NASA Langley Research Center and was first deployed in 2019. It uses four wavelengths at 935 nm to achieve sensitivity over a wide dynamic range, and simultaneously employs 1064 nm backscatter and 532 nm high spectral resolution lidar (HSRL) measurements for aerosol and cloud profiling. A key component of the WV retrieval framework is flexibly trading resolution for precision to achieve optimal data sets for scientific objectives across scales. A technique for retrieving WV in the lowest few hundred meters of the atmosphere using the strong surface return signal is also presented. The five maiden flights of the HALO WV DIAL spanned the tropics through midlatitudes with a wide range of atmospheric conditions, but opportunities for validation were sparse. Comparisons to dropsonde WV profiles were qualitatively in good agreement, though statistical analysis was impossible due to systematic error in the dropsonde measurements. Comparison of HALO to in situ WV measurements onboard the aircraft showed no substantial bias across three orders of magnitude, despite variance (R2 = 0.66) that may be largely attributed to spatiotemporal variability. Precipitable water vapor measurements from the spaceborne sounders AIRS and IASI compared very well to HALO with R2 > 0.96 over ocean and R2 = 0.86 over land.


Sign in / Sign up

Export Citation Format

Share Document