scholarly journals A Study on Improvement of Blockchain Application to Overcome Vulnerability of IoT Multiplatform Security

Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 402 ◽  
Author(s):  
Seong-Kyu Kim ◽  
Ung-Mo Kim ◽  
Jun-Ho Huh

IoT devices are widely used in the smart home, automobile, and aerospace areas. Note, however, that recent information on thefts and hacking have given rise to many problems. The aim of this study is to overcome the security weaknesses of existing Internet of Things (IoT) devices using Blockchain technology, which is a recent issue. This technology is used in Machine-to-Machine (M2M) access payment—KYD (Know Your Device)—based on the reliability of existing IoT devices. Thus, this paper proposes a BoT (Blockchain of Things) ecosystem to overcome problems related to the hacking risk of IoT devices to be introduced, such as logistics management and history management. There are also many security vulnerabilities in the sensor multi-platform from the IoT point of view. In this paper, we propose a model that solves the security vulnerability in the sensor multi-platform by using blockchain technology on an empirical model. The color spectrum chain mentioned in this paper suggests a blockchain technique completed by using the multiple-agreement algorithm to enhance Thin-Plate Spline (TPS) performance and measure various security strengths. In conclusion, we propose a radix of the blockchain’s core algorithm to overcome the weaknesses of sensor devices such as automobile, airplane, and close-circuit television (CCTV) using blockchain technology. Because all IoT devices use wireless technology, they have a fundamental weakness over wired networks. Sensors are exposed to hacking and sensor multi-platforms are vulnerable to security by multiple channels. In addition, since IoT devices have a lot of security weaknesses we intend to show the authentication strength of security through the color spectrum chain and apply it to sensor and multi-platform using Blockchain in the future.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Rizwan Majeed ◽  
Nurul Azma Abdullah ◽  
Imran Ashraf ◽  
Yousaf Bin Zikria ◽  
Muhammad Faheem Mushtaq ◽  
...  

The idea of a smart home is getting attention for the last few years. The key challenges in a smart home are intelligent decision making, secure identification, and authentication of the IoT devices, continuous connectivity, data security, and privacy issues. The existing systems are targeting one or two of these issues whereas a smart home automation system that is not only secure but also has intelligent decision making and analytical abilities is the need of time. In this paper, we present a novel idea of a smart home that uses a machine learning algorithm (Support Vector Machine) for intelligent decision making and also uses blockchain technology to ensure identification and authentication of the IoT devices. Emerging blockchain technology plays a vital role by providing a reliable, secure, and decentralized mechanism for identification and authentication of the IoT devices used in the proposed home automation system. Moreover, the SVM classifier is applied to classify the status of devices used in the proposed smart home automation system into one of the two categories, i.e., “ON” and “OFF.” This system is based on Raspberry Pi, 5 V relay circuit, and some sensors. A mobile application is developed using the Android platform. Raspberry Pi acting as the server maintains the database of each appliance. The HTTP web interface and apache server are used for communication among the Android app and Raspberry Pi. The proposed idea is tested in the lab and real life to validate its effectiveness and usefulness. It is also ensured that the hardware and technology used in the proposed idea are cheap, easily available, and replicable. The experimental results highlight its significance and validate the proof of the concept.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5298
Author(s):  
Ladislav Huraj ◽  
Marek Šimon ◽  
Tibor Horák

Smart devices along with sensors are gaining in popularity with the promise of making life easier for the owner. As the number of sensors in an Internet of Things (IoT) system grows, a question arises as to whether the transmission between the sensors and the IoT devices is reliable and whether the user receives alerts correctly and in a timely manner. Increased deployment of IoT devices with sensors increases possible safety risks. It is IoT devices that are often misused to create Distributed Denial of Service (DDoS) attacks, which is due to the weak security of IoT devices against misuse. The article looks at the issue from the opposite point of view, when the target of a DDoS attack are IoT devices in a smart home environment. The article examines how IoT devices and the entire smart home will behave if they become victims of a DDoS attack aimed at the smart home from the outside. The question of security was asked in terms of whether a legitimate user can continue to control and receive information from IoT sensors, which is available during normal operation of the smart home. The case study was done both from the point of view of the attack on the central units managing the IoT sensors directly, as well as on the smart-home personal assistant systems, with which the user can control the IoT sensors. The article presents experimental results for individual attacks performed in the case study and demonstrates the resistance of real IoT sensors against DDoS attack. The main novelty of the article is that the implementation of a personal assistant into the smart home environment increases the resistance of the user’s communication with the sensors. This study is a pilot testing the selected sensor sample to show behavior of smart home under DDoS attack.


Author(s):  
Yehia Ibrahim Alzoubi ◽  
Ahmad Al-Ahmad ◽  
Ashraf Jaradat

<span lang="EN-US">Due to the expansion growth of the IoT devices, Fog computing was proposed to enhance the low latency IoT applications and meet the distribution nature of these devices. However, Fog computing was criticized for several privacy and security vulnerabilities. This paper aims to identify and discuss the security challenges for Fog computing. It also discusses blockchain technology as a complementary mechanism associated with Fog computing to mitigate the impact of these issues. The findings of this paper reveal that blockchain can meet the privacy and security requirements of fog computing; however, there are several limitations of blockchain that should be further investigated in the context of Fog computing.</span>


Author(s):  
Taufik Hidayat ◽  
Rahutomo Mahardiko

Pest can be a serious topic in agricultural areas especially rice plantations. The pest destroys the plants before harvesting time. Because of the presence of the pest, the yield of agricultural products is decreasing. From a technical point of view, an agricultural professional should identify not only the type of pest that destroys rice plants but also overcome the pest. This research proposes a paper review on pest detection systems by using Blockchain technology and the Internet of Things involving all parties involved. The use of the review is to have a broad overview regarding the functional combination between IoT and Blockchain technologies to reduce the pest problems. Smart contract technology Blockchain may be held to determine automatic alert in the system and know how to resolve the problem accurately and all information is verified by blockchain system without a human interception. IoT devices can be attached to rice plantations to monitor, determine and send the information of the pests. Our paper explains the combination of IoT and Blockchain technologies in order to improve any possibility of success rate by getting the pests. Thus, IoT replaces human manual checking in pest identification to reduce human error. So that, the harvesting time can be increased and the agriculture yields are good. The search comparison results show that ScienceDirect has the highest search value


IoT ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 140-162
Author(s):  
Hung Nguyen-An ◽  
Thomas Silverston ◽  
Taku Yamazaki ◽  
Takumi Miyoshi

We now use the Internet of things (IoT) in our everyday lives. The novel IoT devices collect cyber–physical data and provide information on the environment. Hence, IoT traffic will count for a major part of Internet traffic; however, its impact on the network is still widely unknown. IoT devices are prone to cyberattacks because of constrained resources or misconfigurations. It is essential to characterize IoT traffic and identify each device to monitor the IoT network and discriminate among legitimate and anomalous IoT traffic. In this study, we deployed a smart-home testbed comprising several IoT devices to study IoT traffic. We performed extensive measurement experiments using a novel IoT traffic generator tool called IoTTGen. This tool can generate traffic from multiple devices, emulating large-scale scenarios with different devices under different network conditions. We analyzed the IoT traffic properties by computing the entropy value of traffic parameters and visually observing the traffic on behavior shape graphs. We propose a new method for identifying traffic entropy-based devices, computing the entropy values of traffic features. The method relies on machine learning to classify the traffic. The proposed method succeeded in identifying devices with a performance accuracy up to 94% and is robust with unpredictable network behavior with traffic anomalies spreading in the network.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3587
Author(s):  
Ezequiel Simeoni ◽  
Eugenio Gaeta ◽  
Rebeca I. García-Betances ◽  
Dave Raggett ◽  
Alejandro M. Medrano-Gil ◽  
...  

Internet of Things (IoT) technologies are already playing an important role in our daily activities as we use them and rely on them to increase our abilities, connectivity, productivity and quality of life. However, there are still obstacles to achieving a unique interface able to transfer full control to users given the diversity of protocols, properties and specifications in the varied IoT ecosystem. Particularly for the case of home automation systems, there is a high degree of fragmentation that limits interoperability, increasing the complexity and costs of developments and holding back their real potential of positively impacting users. In this article, we propose implementing W3C’s Web of Things Standard supported by home automation ontologies, such as SAREF and UniversAAL, to deploy the Living Lab Gateway that allows users to consume all IoT devices from a smart home, including those physically wired and using KNX® technology. This work, developed under the framework of the EC funded Plan4Act project, includes relevant features such as security, authentication and authorization provision, dynamic configuration and injection of devices, and devices abstraction and mapping into ontologies. Its deployment is explained in two scenarios to show the achieved technology’s degree of integration, the code simplicity for developers and the system’s scalability: one consisted of external hardware interfacing with the smart home, and the other of the injection of a new sensing device. A test was executed providing metrics that indicate that the Living Lab Gateway is competitive in terms of response performance.


2021 ◽  
pp. 40-44
Author(s):  
Daniyal Rashidovich Zagidullin ◽  
Nataliya Sergeevna Pulyavina

This article discusses the blockchain technology and a relatively new phenomenon in the field of this technology — NFT (non-fungible tokens). The paper analyzes the growth prospects and current shortcomings of the concept. The phenomenon of NFT, which is still not well described in scientific publications, is considered in this article from a technological point of view. Based on the results of the market analysis, the authors suggest continuing the development of the blockchain and strengthening its security, as well as conducting further research in this area.


2021 ◽  
pp. 5-16
Author(s):  
Parth Rustagi ◽  
◽  
◽  
◽  
◽  
...  

As useful as it gets to connect devices to the internet to make life easier and more comfortable, it also opens the gates to various cyber threats. The connection of Smart Home devices to the internet makes them vulnerable to malicious hackers that infiltrate the system. Hackers can penetrate these systems and have full control over devices. This can lead to denial of service, data leakage, invasion of privacy, etc. Thus security is a major aspect of Smart home devices. However, many companies manufacturing these Smart Home devices have little to no security protocols in their devices. In the process of making the IoT devices cheaper, various cost-cutting is done on the security protocols in IoT devices. In some way, many manufactures of the devices don’t even consider this as a factor to build upon. This leaves the devices vulnerable to attacks. Various authorities have worked upon to standardize the security aspects for the IoT and listed out guidelines for manufactures to follow, but many fail to abide by them. This paper introduces and talks about the various threats, various Security threats to Smart Home devices. It takes a deep dive into the solutions for the discussed threats. It also discusses their prevention. Lastly, it discusses various preventive measures and good practices to be incorporated to protect devices from any future attacks.


Sign in / Sign up

Export Citation Format

Share Document