scholarly journals Production of Oxygenated Fuel Additives from Residual Glycerine Using Biocatalysts Obtained from Heavy-Metal-Contaminated Jatropha curcas L. Roots

Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 740 ◽  
Author(s):  
Juan García-Martín ◽  
Francisco Alés-Álvarez ◽  
Miguel Torres-García ◽  
Chao-Hui Feng ◽  
Paloma Álvarez-Mateos

This work aims to shed light on the use of two biochars, obtained from the pyrolysis at 550 °C of heavy-metal-contaminated Jatropha curcas L. roots, as heterogeneous catalysts for glycerol esterification using residual glycerine. To do this, glycerine from biodiesel production was purified. In a first step, H3PO4 or H2SO4 was used to remove non-glycerol organic matter. The glycerol-rich phase was then extracted with ethanol or propanol, which increased the glycerol content from 43.2% to up to 100%. Subsequently, the esterification of both purified glycerine and commercial USP glycerine was assayed with acetic acid (AA) or with acetic anhydride (AH) at 9:1 molar ratio to glycerol using Amberlyst-15 as catalyst. Different reaction times (from 1.5 to 3 h) and temperatures (100–115 °C when using AA and 80–135 °C when using AH) were assessed. Results revealed that the most suitable conditions were 80 °C and 1.5 h reaction time using AH, achieving 100% yield and selectivity towards triacetylglycerol (TAG) almost with both glycerines. Finally, the performance and reuse of the two heterogeneous biocatalysts was assessed. Under these conditions, one of the biocatalysts also achieved 100% TAG yield.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Achanai Buasri ◽  
Tidarat Rattanapan ◽  
Chalida Boonrin ◽  
Chosita Wechayan ◽  
Vorrada Loryuenyong

Microwave-assisted biodiesel production via transesterification ofJatropha curcasoil with methanol using solid oxide catalyst derived from waste shells of oyster andPyramidellawas studied. The shells were calcined at 900°C for 2 h and calcium oxide (CaO) catalyst characterizations were carried out by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscope (SEM), and the Brunauer-Emmett-Teller (BET) surface area measurements. The effects of reaction variables such as reaction time, microwave power, methanol/oil molar ratio, and catalyst loading on the yield of biodiesel were investigated. Reusability of waste shell catalyst was also examined. The results indicated that the economic and environmentally friendly catalysts derived from oyster andPyramidellashells showed good reusability and had high potential to be used as biodiesel production catalysts under microwave-assisted transesterification ofJatropha curcasoil with methanol.


Author(s):  
Muh. Irwan ◽  
Hamdani Saidi ◽  
M. A. Rachman ◽  
Ramli Ramli ◽  
Marlinda Marlinda

The biodiesel synthesis through alcoholysis process of triglyceride from Jatropha curcas using different type of alcohol, such as: methanol, ethanol, isopropyl alcohol and tert-butanol, was conducted in the presence of potassium hydroxide (KOH) as catalyst under 35 kHz frequency ultrasound irradiation. The optimum conditions, such as: alcohol to jatropha oil molar ratio, concentration of catalyst, reaction temperature, and reaction time, were found  to be 7:1 of alcohol to jatropha oil molar ratio, 0.5 % of KOH, temperature of reaction at 35 0C, within the reaction times of 15 minutes. The results obtained for the different types of alcohol were 62.77 %, 57.93 %, 51.64 %, and 46.77 % for methanol, ethanol, isopropyl alcohol, and tert-butanol, respectively. Copyright © 2017 BCREC Group. All rights reservedReceived: 11st November 2016; Revised: 8th March 2017; Accepted: 9th March 2017; Available online: 27th October 2017; Published regularly: December 2017How to Cite: Irwan, M., Saidi, H., Rachman, M.A., Ramli, R., Marlinda, M. (2017). Rapid Alcoholysis of Jatropha Curcas Oil for Biodiesel Production Using Ultrasound Irradiation. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3): 306-311 (doi:10.9767/bcrec.12.3.801.306-311) 


Author(s):  
Ana Avellán ◽  
Segundo García ◽  
Gabriel Burgos ◽  
Carlos Moreira ◽  
Oswaldo García ◽  
...  

  In order to reduce production costs of biodiesel, minimum transesterification conditions were herein evaluated. Limiting factors were determined to use calcium oxide and hydroxide catalysts, at different doses and concentrations in the transesterification of Jatropha curcas L. oil and methanol. It was determined that the presence of water, and content of free fatty acids (0,423-2,53% acidity) in the Jatropha oil are just a minimum inhibition factors, in comparison with atmospheric reaction conditions. In contrast, the 10:1 molar ratio of methanol and oil allowed a 98,9% yield of biodiesel when sodium hydroxide was used as catalyst. The same yield was obtained with or without oil esterification. In perspective, avoiding the poisoning of heterogeneous catalysts is still under study in the search for catalysts recovery from the reaction medium.   Index Terms—transesterification, nucleophilic reaction, oil, energy, biofuel.


2018 ◽  
Vol 156 ◽  
pp. 03002
Author(s):  
Iwan Ridwan ◽  
Mukhtar Ghazali ◽  
Adi Kusmayadi ◽  
Resza Diwansyah Putra ◽  
Nina Marlina ◽  
...  

The oleic acid solubility in methanol is low due to two phase separation, and this causes a slow reaction time in biodiesel production. Tetrahydrofuran as co-solvent can decrease the interfacial surface tension between methanol and oleic acid. The objective of this study was to investigate the effect of co-solvent, methanol to oleic acid molar ratio, catalyst amount, and temperature of the reaction to the free fatty acid conversion. Oleic acid esterification was conducted by mixing oleic acid, methanol, tetrahydrofuran and Amberlyst 15 as a solid acid catalyst in a batch reactor. The Amberlyst 15 used had an exchange capacity of 2.57 meq/g. Significant free fatty acid conversion increments occur on biodiesel production using co-solvent compared without co-solvent. The highest free fatty acid conversion was obtained over methanol to the oleic acid molar ratio of 25:1, catalyst use of 10%, the co-solvent concentration of 8%, and a reaction temperature of 60°C. The highest FFA conversion was found at 28.6 %, and the steady state was reached after 60 minutes. In addition, the use of Amberlyst 15 oleic acid esterification shows an excellent performance as a solid acid catalyst. Catalytic activity was maintained after 4 times repeated use and reduced slightly in the fifth use.


2014 ◽  
Vol 17 (2) ◽  
pp. 102-108
Author(s):  
Phuoc Van Nguyen ◽  
Chhoun Vi Thun ◽  
Quan Thanh Pham

Different technologies are currently available for biodiesel production from various kinds of lipid containing feedstock. Among them, the alkaline-catalyzed methods are the most widely studied. However, here are several disadvantages related to biodiesel production using alkaline catalysts such as generation of wastewater, catalyst deactivation, difficulty in the separation of biodiesel from catalyst and glycerin, etc. To limit the problems mentioned above, in this study, biodiesel is produced by a non-catalytic using C2H5OH. The effect of experimental variables (the molar ratio ethanol/oil of 41.18:1 – 46.82:1, reaction times of 50 - 90 minutes and reaction temperatures of 2750C - 2950C) on the yield of biodiesel was studied. The 96% yield of Cambodia biodiesel of reaction between C2H5OH and Jatropha Oil at 46:1 at temperature 2900C at 60 minutes no using catalysts. Obtained biodiesel fuel was up to the International Standard ASTM D6751 for biodiesel fuel blend stock (B100).


2020 ◽  
Vol 8 (3) ◽  
pp. 527
Author(s):  
Leandro Dias da Silva ◽  
Fábio Pinto Gomes ◽  
Mateus Pires Barbosa ◽  
Raul Antônio Araújo do Bonfim ◽  
Mikaela Oliveira Souza ◽  
...  

Jatropha curcas L. (Euphorbiaceae) is a species grown in tropicalcountries and used for biodiesel production. Morphophysiological traits were analyzed to assess the genetic diversity in nine genotypes of J. curcas under deficit water. Seeds of plants from different populations, collected in diferente brazilian regions, were grown under two water regimes (100% and 50% tank capacity). Multivariate analysis was used to characterize genetic diversity. The UPGMA dendrogram built from the genetic distance group indicated the segregation of genotypes into five groups for growth traits and six groups for physiological traits. Then, an principal components analysis was carried out, to evaluate the pattern of character variations and then segregate the characteristics that could distinguish parental genotypes for use in plant breeding. Results showed 65.50% and 56.02% for the two first principal components of growth and physiological traits, respectively. Total root area was the most determining trait for genetic dissimilarity (18.9%) and group formation, followed by plant height (17.9%) and number of leaves (17.6%). On the other hand, stomatal conductance (gs) (24.9%) and guaiacol peroxidase (GPX) (20.9%) were the most determining physiological traits. The analysis of morphophysiological traits indicated CNPAE-298 and 299 as the most distant genotypes among the plant groups. Under water-limited conditions, total root area, plant height, gs and GPX were the most efficient traits to explain genetic dissimilarity among the genotypes, and for this reason they should be referred as a priority for further studies on genotypes selection in this species.


2013 ◽  
Vol 3 (4) ◽  
pp. 361-369 ◽  
Author(s):  
Purabi Mazumdar ◽  
Swaroopa Rani Dasari ◽  
Venu Babu Borugadda ◽  
Garima Srivasatava ◽  
L. Sahoo ◽  
...  

Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 465
Author(s):  
Zafitsara Tantely Andrianirina ◽  
Matthias Martin ◽  
Euloge Dongmeza ◽  
Elisa Senger

The tropical multiuse tree Jatropha curcas L. (jatropha) is highly promoted as oilseed crop for biodiesel production and for climate change mitigation, but cultivation practices require further research. The objectives of this study were to assess the effects of varying plant spacings (2.0 m × 4 m compared to 1.5 m × 4 m), crop establishment methods (raising plantlets in a nursery prior to planting to the field compared to direct sowing) and genotypes on seed yield, seed quality and plant height, recorded at a dry-subhumid location in Madagascar (Ihosy) and at a humid location in Cameroon (Batchenga). Averaged across treatment variants and genotypes, seed yield and seed oil content were higher at the dry-subhumid site and in particular the narrower spacing reached higher seed yields per unit area than the wider spacing. At the humid site, plant growth was characterized by strong accumulation of biomass. The establishment method tested at the dry-subhumid site showed no significant differences in the recorded parameters. Our results encourage to re-think common practices in jatropha cultivation and underpin the importance of the correct choice of location, genotype and agronomic practices considering the interactions between all factors.


2018 ◽  
Vol 34 (2) ◽  
pp. 267-297 ◽  
Author(s):  
Farrukh Jamil ◽  
Lamya Al-Haj ◽  
Ala’a H. Al-Muhtaseb ◽  
Mohab A. Al-Hinai ◽  
Mahad Baawain ◽  
...  

AbstractDue to increasing concerns about global warming and dwindling oil supplies, the world’s attention is turning to green processes that use sustainable and environmentally friendly feedstock to produce renewable energy such as biofuels. Among them, biodiesel, which is made from nontoxic, biodegradable, renewable sources such as refined and used vegetable oils and animal fats, is a renewable substitute fuel for petroleum diesel fuel. Biodiesel is produced by transesterification in which oil or fat is reacted with short chain alcohol in the presence of a catalyst. The process of transesterification is affected by the mode of reaction, molar ratio of alcohol to oil, type of alcohol, nature and amount of catalysts, reaction time, and temperature. Various studies have been carried out using different oils as the raw material; different alcohols (methanol, ethanol, butanol); different catalysts; notably homogeneous catalysts such as sodium hydroxide, potassium hydroxide, sulfuric acid, and supercritical fluids; or, in some cases, enzymes such as lipases. This article focuses on the application of heterogeneous catalysts for biodiesel production because of their environmental and economic advantages. This review contains a detailed discussion on the advantages and feasibility of catalysts for biodiesel production, which are both environmentally and economically viable as compared to conventional homogeneous catalysts. The classification of catalysts into different categories based on a catalyst’s activity, feasibility, and lifetime is also briefly discussed. Furthermore, recommendations have been made for the most suitable catalyst (bifunctional catalyst) for low-cost oils to valuable biodiesel and the challenges faced by the biodiesel industry with some possible solutions.


Sign in / Sign up

Export Citation Format

Share Document