scholarly journals Computational Prediction of Susceptibility to Biofilms Growth: Two-Dimensional Analysis of Critical Construction Details

Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 293
Author(s):  
Václav Kočí ◽  
Jan Kočí ◽  
Jiří Maděra ◽  
Jaroslav Žák ◽  
Robert Černý

Retrofitting of historical and traditional buildings is an effective thermal protection measure. The presence of thermal insulation in the composition of building envelopes might, however, bring some shortages due to a decrease of exterior surface temperatures or possible water vapor condensation. These shortages can improve living conditions for various microorganisms on the exterior surfaces, especially in the case of interior thermal insulation systems that are typical with thermal bridges and thus supply the surface with heat to a greater extent. This paper, therefore, aims at the investigation of hygrothermal conditions in selected critical construction details and evaluates the results from the point of view of potential biofilms growth. Two-dimensional modeling of coupled heat and moisture is applied and the hygrothermal patterns are evaluated based on an adjusted isopleth growth model. The results showed that the duration of favorable conditions for biofilms growth is relatively low, accounting for less than 180 h in the worst-case scenario. It means the exterior surfaces of historical buildings provided with interior thermal insulation systems are not threatened by biofilms growth. Anyway, other negative aspects have been revealed that should be treated individually. Possible wood decay or increased hygrothermal straining are the typical examples in that respect.

2018 ◽  
Vol 42 (6) ◽  
pp. 647-664 ◽  
Author(s):  
Saeed Nazari ◽  
Mahdi Zamani ◽  
Sajad A Moshizi

This study is dedicated to drawing a comparison between two- and three-dimensional approach capabilities for the simulation of two similar rotors placed in three inline (or tandem) arrangements. This arrangement is generally recognized as the worst-case scenario for the downwind rotor considering the vortices and disorders produced by the upwind rotor. The rotor in question with the diameter of 2.5 m is made up of three NACA0015 blades with the chord length and span size equal to 0.4 and 3 m, respectively. Based on the authors’ previous works, the [Formula: see text] shear stress transport model was selected for this comparative study. According to the results, there is an appreciable deviation in the aerodynamic performance of the upwind rotor predicted by the two-dimensional and three-dimensional simulation techniques. There is no tangible difference between the two-dimensional and three-dimensional results in terms of the averaged power output for the downwind rotor. However, the study of flow field employing different means like vortex structures, axial velocity, and even torque variation indicates that the two-dimensional approach is unable to achieve realistic and reliable output data. The introduced “pillar effect” regarding the dimensional limitations of the two-dimensional approach, which affects the vorticity shape and its dissipation, is plausible evidence for this discrepancy.


2003 ◽  
Vol 2 (5) ◽  
pp. 349-356
Author(s):  
Veliborka Bogdanovic ◽  
Danijela Milanovic

Various facade facings - systems made of thermal insulation materials with the finishing facade renders which are directly applied to the facade walls are simple for construction and are applied in the newly built structures and they are also suitable for the application in the cases of the energy revitalization of the existing buildings. The exterior walls, and especially their outer layers, are exposed to various atmospheric influences. They cause different effects in the walls, one of them being the occurrence of the water vapor condensation. In the walls with the facade thermal insulation systems, the occurrence of the water vapor condensation may be caused by the vapor diffusion characteristics of the exterior render. At certain temperatures and humidity of the external and internal air, there are several conditions for the occurrence of the water vapor condensation in the wall with the facade thermal insulation system, when the exterior render is of higher relative resistance to the water vapor diffusion. Therefore, it is useful to determine the vapor diffusion characteristics, that is, highest values of the relative resistance to the water vapor diffusion of the exterior renders which will not cause the condensation of the water vapor in the wall, or at least those that will not cause the impermissible dampening of the wall material, and will allow for the possibility of moisture drying.


Author(s):  
E. J. J. Beyer ◽  
K. J. Craig

This paper describes the design process followed by Westinghouse Electric South Africa for the insertion of hot internals into the Reactivity Control System (RCS) and Reserve Shutdown System (RSS) Units Under Test (UUTs) at the Helium Test Facility (HTF) at Pelindaba, South Africa. The aim of the UUTs is to allow the validation of the high temperature operation of the RCS and RSS systems for implementation into the proposed Demonstration Power Plant of the PBMR. The units use electrical heaters to obtain pebble-bed reactor thermal conditions for both the control rods and small absorber spheres (SAS) under a pressurized helium environment. Design challenges include providing for strength under elevated temperatures (900°C maximum); pressure boundary integrity (9MPa maximum); separation of different volumes (representing core barrel, reactor citadel and other Reactor Pressure Vessel (RPV) volumes); thermal protection of carbon steel vessels by using thermal insulation; allowing for diverse thermal expansion coefficients of different materials; allowing for depressurization events within the insulation and internals; having access for temperature, pressure, stress and proximity sensors and electrical wiring through high pressure penetrations; and provision for assembly of the hot internals both on and off-site. Several thermal analyses using Computational Fluid Dynamics (CFD) were performed to evaluate both worst-case and operational conditions of the UUTs. Factors that were considered include thermal insulation properties, heat transfer modes (internal radiation, external radiation and natural convection, forced internal convection for cooling) and operating pressure (ranging from 1 to 9MPa). The thermal design uses elements originally proposed for hot gas duct design. The results obtained show that the proposed design satisfies ASME VIII requirements of the pressure boundary and that all challenges are successfully met.


2008 ◽  
Author(s):  
Sonia Savelli ◽  
Susan Joslyn ◽  
Limor Nadav-Greenberg ◽  
Queena Chen

Author(s):  
D. V. Vaniukova ◽  
◽  
P. A. Kutsenkov ◽  

The research expedition of the Institute of Oriental studies of the Russian Academy of Sciences has been working in Mali since 2015. Since 2017, it has been attended by employees of the State Museum of the East. The task of the expedition is to study the transformation of traditional Dogon culture in the context of globalization, as well as to collect ethnographic information (life, customs, features of the traditional social and political structure); to collect oral historical legends; to study the history, existence, and transformation of artistic tradition in the villages of the Dogon Country in modern conditions; collecting items of Ethnography and art to add to the collection of the African collection of the. Peter the Great Museum (Kunstkamera, Saint Petersburg) and the State Museum of Oriental Arts (Moscow). The plan of the expedition in January 2020 included additional items, namely, the study of the functioning of the antique market in Mali (the “path” of things from villages to cities, which is important for attributing works of traditional art). The geography of our research was significantly expanded to the regions of Sikasso and Koulikoro in Mali, as well as to the city of Bobo-Dioulasso and its surroundings in Burkina Faso, which is related to the study of migrations to the Bandiagara Highlands. In addition, the plan of the expedition included organization of a photo exhibition in the Museum of the village of Endé and some educational projects. Unfortunately, after the mass murder in March 2019 in the village of Ogossogou-Pel, where more than one hundred and seventy people were killed, events in the Dogon Country began to develop in the worst-case scenario: The incessant provocations after that revived the old feud between the Pel (Fulbe) pastoralists and the Dogon farmers. So far, this hostility and mutual distrust has not yet developed into a full-scale ethnic conflict, but, unfortunately, such a development now seems quite likely.


2020 ◽  
Author(s):  
Ahmed Abdelmoaty ◽  
Wessam Mesbah ◽  
Mohammad A. M. Abdel-Aal ◽  
Ali T. Alawami

In the recent electricity market framework, the profit of the generation companies depends on the decision of the operator on the schedule of its units, the energy price, and the optimal bidding strategies. Due to the expanded integration of uncertain renewable generators which is highly intermittent such as wind plants, the coordination with other facilities to mitigate the risks of imbalances is mandatory. Accordingly, coordination of wind generators with the evolutionary Electric Vehicles (EVs) is expected to boost the performance of the grid. In this paper, we propose a robust optimization approach for the coordination between the wind-thermal generators and the EVs in a virtual<br>power plant (VPP) environment. The objective of maximizing the profit of the VPP Operator (VPPO) is studied. The optimal bidding strategy of the VPPO in the day-ahead market under uncertainties of wind power, energy<br>prices, imbalance prices, and demand is obtained for the worst case scenario. A case study is conducted to assess the e?effectiveness of the proposed model in terms of the VPPO's profit. A comparison between the proposed model and the scenario-based optimization was introduced. Our results confirmed that, although the conservative behavior of the worst-case robust optimization model, it helps the decision maker from the fluctuations of the uncertain parameters involved in the production and bidding processes. In addition, robust optimization is a more tractable problem and does not suffer from<br>the high computation burden associated with scenario-based stochastic programming. This makes it more practical for real-life scenarios.<br>


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 491
Author(s):  
Alina E. Kozhukhova ◽  
Stephanus P. du Preez ◽  
Aleksander A. Malakhov ◽  
Dmitri G. Bessarabov

In this study, a Pt/anodized aluminum oxide (AAO) catalyst was prepared by the anodization of an Al alloy (Al6082, 97.5% Al), followed by the incorporation of Pt via an incipient wet impregnation method. Then, the Pt/AAO catalyst was evaluated for autocatalytic hydrogen recombination. The Pt/AAO catalyst’s morphological characteristics were determined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The average Pt particle size was determined to be 3.0 ± 0.6 nm. This Pt/AAO catalyst was tested for the combustion of lean hydrogen (0.5–4 vol% H2 in the air) in a recombiner section testing station. The thermal distribution throughout the catalytic surface was investigated at 3 vol% hydrogen (H2) using an infrared camera. The Al/AAO system had a high thermal conductivity, which prevents the formation of hotspots (areas where localized surface temperature is higher than an average temperature across the entire catalyst surface). In turn, the Pt stability was enhanced during catalytic hydrogen combustion (CHC). A temperature gradient over 70 mm of the Pt/AAO catalyst was 23 °C and 42 °C for catalysts with uniform and nonuniform (worst-case scenario) Pt distributions. The commercial computational fluid dynamics (CFD) code STAR-CCM+ was used to compare the experimentally observed and numerically simulated thermal distribution of the Pt/AAO catalyst. The effect of the initial H2 volume fraction on the combustion temperature and conversion of H2 was investigated. The activation energy for CHC on the Pt/AAO catalyst was 19.2 kJ/mol. Prolonged CHC was performed to assess the durability (reactive metal stability and catalytic activity) of the Pt/AAO catalyst. A stable combustion temperature of 162.8 ± 8.0 °C was maintained over 530 h of CHC. To confirm that Pt aggregation was avoided, the Pt particle size and distribution were determined by TEM before and after prolonged CHC.


2021 ◽  
Vol 13 (5) ◽  
pp. 2491
Author(s):  
Alena Tažiková ◽  
Zuzana Struková ◽  
Mária Kozlovská

This study deals with small investors’ demands on thermal insulation systems when choosing the most suitable solution for a family house. By 2050, seventy percent of current buildings, including residential buildings, are still expected to be in operation. To reach carbon neutrality, it is necessary to reduce operational energy consumption and thus reduce the related cost of building operations and the cost of the life cycle of buildings. One solution is to adapt envelopes of buildings by proper insulation solutions. To choose an optimal thermal insulation system that will reduce energy consumption of building, it is necessary to consider the environmental cost of insulation materials in addition to the construction cost of the materials. The environmental cost of a material depends on the carbon footprint from the initial origin of the material. This study presents the results of a multi-criteria decision-making analysis, where five different contractors set the evaluation criteria for selection of the optimal thermal insulation system. In their decision-making, they involved the requirements of small investors. The most common requirements were selected: the construction cost, the construction time (represented by the total man-hours), the thermal conductivity coefficient, the diffusion resistance factor, and the reaction to fire. The confidences of the criteria were then determined with the help of the pairwise comparison method. This was followed by multi-criteria decision-making using the method of index coefficients, also known as the method of basic variant. The multi-criteria decision-making included thermal insulation systems based on polystyrene, mineral wool, thermal insulation plaster, and aerogels’ nanotechnology. As a result, it was concluded that, currently, in Slovakia, small investors emphasize the cost of material and the coefficient of thermal conductivity and they do not care as much about the carbon footprint of the material manufacturing, the importance of which is mentioned in this study.


Sports ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 76
Author(s):  
Dylan Mernagh ◽  
Anthony Weldon ◽  
Josh Wass ◽  
John Phillips ◽  
Nimai Parmar ◽  
...  

This is the first study to report the whole match, ball-in-play (BiP), ball-out-of-play (BoP), and Max BiP (worst case scenario phases of play) demands of professional soccer players competing in the English Championship. Effective playing time per soccer game is typically <60 min. When the ball is out of play, players spend time repositioning themselves, which is likely less physically demanding. Consequently, reporting whole match demands may under-report the physical requirements of soccer players. Twenty professional soccer players, categorized by position (defenders, midfielders, and forwards), participated in this study. A repeated measures design was used to collect Global Positioning System (GPS) data over eight professional soccer matches in the English Championship. Data were divided into whole match and BiP data, and BiP data were further sub-divided into different time points (30–60 s, 60–90 s, and >90 s), providing peak match demands. Whole match demands recorded were compared to BiP and Max BiP, with BiP data excluding all match stoppages, providing a more precise analysis of match demands. Whole match metrics were significantly lower than BiP metrics (p < 0.05), and Max BiP for 30–60 s was significantly higher than periods between 60–90 s and >90 s. No significant differences were found between positions. BiP analysis allows for a more accurate representation of the game and physical demands imposed on professional soccer players. Through having a clearer understanding of maximum game demands in professional soccer, practitioners can design more specific training methods to better prepare players for worst case scenario passages of play.


Sign in / Sign up

Export Citation Format

Share Document