scholarly journals A Review of CO2 Storage in View of Safety and Cost-Effectiveness

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 600 ◽  
Author(s):  
Cheng Cao ◽  
Hejuan Liu ◽  
Zhengmeng Hou ◽  
Faisal Mehmood ◽  
Jianxing Liao ◽  
...  

The emissions of greenhouse gases, especially CO2, have been identified as the main contributor for global warming and climate change. Carbon capture and storage (CCS) is considered to be the most promising strategy to mitigate the anthropogenic CO2 emissions. This review aims to provide the latest developments of CO2 storage from the perspective of improving safety and economics. The mechanisms and strategies of CO2 storage, focusing on their characteristics and current status, are discussed firstly. In the second section, the strategies for assessing and ensuring the security of CO2 storage operations, including the risks assessment approach and monitoring technology associated with CO2 storage, are outlined. In addition, the engineering methods to accelerate CO2 dissolution and mineral carbonation for fixing the mobile CO2 are also compared within the second section. The third part focuses on the strategies for improving economics of CO2 storage operations, namely enhanced industrial production with CO2 storage to generate additional profit, and co-injection of CO2 with impurities to reduce the cost. Moreover, the role of multiple CCS technologies and their distribution on the mitigation of CO2 emissions in the future are summarized. This review demonstrates that CO2 storage in depleted oil and gas reservoirs could play an important role in reducing CO2 emission in the near future and CO2 storage in saline aquifers may make the biggest contribution due to its huge storage capacity. Comparing the various available strategies, CO2-enhanced oil recovery (CO2-EOR) operations are supposed to play the most important role for CO2 mitigation in the next few years, followed by CO2-enhanced gas recovery (CO2-EGR). The direct mineralization of flue gas by coal fly ash and the pH swing mineralization would be the most promising technology for the mineral sequestration of CO2. Furthermore, by accelerating the deployment of CCS projects on large scale, the government can also play its role in reducing the CO2 emissions.

2017 ◽  
Vol 57 (2) ◽  
pp. 413
Author(s):  
Christopher Consoli ◽  
Alex Zapantis ◽  
Peter Grubnic ◽  
Lawrence Irlam

In 1972, carbon dioxide (CO2) began to be captured from natural gas processing plants in West Texas and transported via pipeline for enhanced oil recovery (EOR) to oil fields also in Texas. This marked the beginning of carbon capture and storage (CCS) using anthropogenic CO2. Today, there are 22 such large-scale CCS facilities in operation or under construction around the world. These 22 facilities span a wide range of capture technologies and source feedstock as well as a variety of geologic formations and terrains. Seventeen of the facilities capture CO2 primarily for EOR. However, there are also several significant-scale CCS projects using dedicated geological storage options. This paper presents a collation and summary of these projects. Moving forward, if international climate targets and aspirations are to be achieved, CCS will increasingly need to be applied to all high emission industries. In addition to climate change objectives, the fundamentals of energy demand and fossil fuel supply strongly suggests that CCS deployment will need to be rapid and global. The oil and gas sector would be expected to be part of this deployment. Indeed, the oil and gas industry has led the deployment of CCS and this paper explores the future of CCS in this industry.


2021 ◽  
Vol 11 (17) ◽  
pp. 7907
Author(s):  
Hye-Seung Lee ◽  
Jinhyung Cho ◽  
Young-Woo Lee ◽  
Kun-Sang Lee

Injecting CO2, a greenhouse gas, into the reservoir could be beneficial economically, by extracting remaining oil, and environmentally, by storing CO2 in the reservoir. CO2 captured from various sources always contains various impurities that affect the gas–oil system in the reservoir, changing oil productivity and CO2 geological storage performance. Therefore, it is necessary to examine the effect of impurities on both enhanced oil recovery (EOR) and carbon capture and storage (CCS) performance. For Canada Weyburn W3 fluid, a 2D compositional simulation of water-alternating-gas (WAG) injection was conducted to analyze the effect of impure CO2 on EOR and CCS performance. Most components in the CO2 stream such as CH4, H2, N2, O2, and Ar can unfavorably increase the MMP between the oil and gas mixture, while H2S decreased the MMP. MMP changed according to the type and concentration of impurity in the CO2 stream. Impurities in the CO2 stream also decreased both sweep efficiency and displacement efficiency, increased the IFT between gas and reservoir fluid, and hindered oil density reduction. The viscous gravity number increased by 59.6%, resulting in a decrease in vertical sweep efficiency. In the case of carbon storage, impurities decreased the performance of residual trapping by 4.1% and solubility trapping by 5.6% compared with pure CO2 WAG. As a result, impurities in CO2 reduced oil recovery by 9.2% and total CCS performance by 4.3%.


2019 ◽  
Vol 12 (3) ◽  
pp. 77-85
Author(s):  
L. D. Kapranova ◽  
T. V. Pogodina

The subject of the research is the current state of the fuel and energy complex (FEC) that ensures generation of a significant part of the budget and the innovative development of the economy.The purpose of the research was to establish priority directions for the development of the FEC sectors based on a comprehensive analysis of their innovative and investment activities. The dynamics of investment in the fuel and energy sector are considered. It is noted that large-scale modernization of the fuel and energy complex requires substantial investment and support from the government. The results of the government programs of corporate innovative development are analyzed. The results of the research identified innovative development priorities in the power, oil, gas and coal sectors of the fuel and energy complex. The most promising areas of innovative development in the oil and gas sector are the technologies of enhanced oil recovery; the development of hard-to-recover oil reserves; the production of liquefied natural gas and its transportation. In the power sector, the prospective areas are activities aimed at improving the performance reliability of the national energy systems and the introduction of digital technologies. Based on the research findings, it is concluded that the innovation activities in the fuel and energy complex primarily include the development of new technologies, modernization of the FEC technical base; adoption of state-of-the-art methods of coal mining and oil recovery; creating favorable economic conditions for industrial extraction of hard-to-recover reserves; transition to carbon-free fuel sources and energy carriers that can reduce energy consumption and cost as well as reducing the negative FEC impact on the environment.


1969 ◽  
Vol 17 ◽  
pp. 13-16 ◽  
Author(s):  
Peter Frykman ◽  
Lars Henrik Nielsen ◽  
Thomas Vangkilde-Pedersen

Carbon capture and storage (CCS) is increasingly considered to be a tool that can significantly reduce the emission of CO2. It is viewed as a technology that can contribute to a substantial, global reduction of emitted CO2 within the timeframe that seems available for mitigating the effects of present and continued emission. In order to develop the CCS method the European Union (EU) has supported research programmes for more than a decade, which focus on capture techniques, transport and geological storage. The results of the numerous research projects on geological storage are summarised in a comprehensive best practice manual outlining guidelines for storage in saline aquifers (Chadwick et al. 2008). A detailed directive for geological storage is under implementation (European Commission 2009), and the EU has furthermore established a programme for supporting the development of more than ten large-scale demonstration plants throughout Europe. Geological investigations show that suitable storage sites are present in most European countries. In Denmark initial investigations conducted by the Geological Survey of Denmark and Greenland and private companies indicate that there is significant storage potential at several locations in the subsurface.


2019 ◽  
Vol 38 (4) ◽  
pp. 733-750
Author(s):  
Sébastien Chailleux

Analyzing the case of France, this article aims to explain how the development of enhanced oil recovery techniques over the last decade contributed to politicizing the subsurface, that is putting underground resources at the center of social unrest and political debates. France faced a decline of its oil and gas activity in the 1990s, followed by a renewal with subsurface activity in the late 2000s using enhanced oil recovery techniques. An industrial demonstrator for carbon capture and storage was developed between 2010 and 2013 , while projects targeting unconventional oil and gas were pushed forward between 2008 and 2011 before eventually being canceled. We analyze how the credibility, legitimacy, and governance of those techniques were developed and how conflicts made the role of the subsurface for energy transition the target of political choices. The level of political and industrial support and social protest played a key role in building project legitimacy, while the types of narratives and their credibility determined the distinct trajectories of hydraulic fracturing and carbon capture and storage in France. The conflicts over enhanced oil recovery techniques are also explained through the critical assessment of the governance framework that tends to exclude civil society stakeholders. We suggest that these conflicts illustrated a new type of politicization of the subsurface by merging geostrategic concerns with social claims about governance, ecological demands about pollution, and linking local preoccupations to global climate change.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6456
Author(s):  
Ewa Knapik ◽  
Katarzyna Chruszcz-Lipska

Worldwide experiences related to geological CO2 storage show that the process of the injection of carbon dioxide into depleted oil reservoirs (CCS-EOR, Carbon Capture and Storage—Enhanced Oil Recovery) is highly profitable. The injection of CO2 will allow an increasing recovery factor (thus increasing CCS process profitability) and revitalize mature reservoirs, which may lead to oil spills due to pressure buildups. In Poland, such a solution has not yet been implemented in the industry. This work provides additional data for analysis of the possibility of the CCS-EOR method’s implementation for three potential clusters of Polish oil reservoirs located at a short distance one from another. The aim of the work was to examine the properties of reservoir fluids for these selected oil reservoirs in order to assure a better understanding of the physicochemical phenomena that accompany the gas injection process. The chemical composition of oils was determined by gas chromatography. All tested oils represent a medium black oil type with the density ranging from 795 to 843 g/L and the viscosity at 313 K, varying from 1.95 to 5.04 mm/s. The content of heavier components C25+ is up to 17 wt. %. CO2–oil MMP (Minimum Miscibility Pressure) was calculated in a CHEMCAD simulator using the Soave–Redlich–Kwong equation of state (SRK EoS). The oil composition was defined as a mixture of n-alkanes. Relatively low MMP values (ca. 8.3 MPa for all tested oils at 313 K) indicate a high potential of the EOR method, and make this geological CO2 storage form more attractive to the industry. For reservoir brines, the content of the main ions was experimentally measured and CO2 solubility under reservoir conditions was calculated. The reservoir brines showed a significant variation in properties with total dissolved solids contents varying from 17.5 to 378 g/L. CO2 solubility in brines depends on reservoir conditions and brine chemistry. The highest calculated CO2 solubility is 1.79 mol/kg, which suggest possible CO2 storage in aquifers.


Author(s):  
Teresa ADAMCZAK-BIAŁY ◽  
Adam WÓJCICKI

Information presented in the article allows us to introduce one of the ways of reducing anthropogenic greenhouse gas emissions responsible for the temperature increase and climate change. This is the technology of capture and underground storage of carbon dioxide in geologic structures (Carbon Capture and Storage/Sequestration – CCS). Most of the large-scale CCS projects (i.e. capture and storage of an order of magnitude of 1 million tonnes of CO2 per year) operate in the United States and Canada. Many of them are associated with the use of CO2 captured from the industrial processes for the enhanced oil recovery (EOR). The presented examples of projects are: Boundary Dam Integrated Carbon Capture and Sequestration Demonstration Project (Canada), Great Plains Synfuels and Weyburn-Midale Project (Canada), and Kemper County IGCC Project (United States). CCS projects are crucial for demonstrating the technological readiness and reduce the cost of wider commercial implementation of capture and geological storage of CO2. The status of the projects on geological storage of CO2 in 2015 is 15 large-scale CCS projects operating around the world, and 7 projects in execution.


2019 ◽  
Vol 8 (6) ◽  
pp. e12861023 ◽  
Author(s):  
Pedro Junior Zucatelli ◽  
Ana Paula Meneguelo ◽  
Gisele de Lorena Diniz Chaves ◽  
Gisele de Lorena Diniz Chaves ◽  
Marielce de Cassia Ribeiro Tosta

The integrity of natural systems is already at risk because of climate change caused by the intense emissions of greenhouse gases in the atmosphere. The goal of geological carbon sequestration is to capture, transport and store CO2 in appropriate geological formations. In this review, we address the geological environments conducive to the application of CCS projects (Carbon Capture and Storage), the phases that make up these projects, and their associated investment and operating costs. Furthermore it is presented the calculations of the estimated financial profitability of different types of projects in Brazil. Using mathematical models, it can be concluded that the Roncador field presents higher gross revenue when the amount of extra oil that can be retrieved is 9.3% (US$ 48.55 billions approximately in 2018). Additional calculations show that the Paraná saline aquifer has the highest gross revenue (US$ 6.90 trillions in 2018) when compared to the Solimões (US$ 3.76 trillions approximately in 2018) and Santos saline aquifers (US$ 2.21 trillions approximately in 2018) if a CCS project were to be employed. Therefore, the proposed Carbon Capture and Storage method in this study is an important scientific contribution for reliable large-scale CO2 storage in Brazil.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4211
Author(s):  
Timofey Eltsov ◽  
Tadeusz W. Patzek

The non-corrosive, electrically resistive fiberglass casing materials may improve the economics of oil and gas field projects. At moderate temperatures (<120 °C), fiberglass casing is superior to carbon steel casing in applications that involve wet CO2 injection and/or production, such as carbon capture and storage, and CO2-based enhanced oil recovery (EOR) methods. Without a perfect protective cement shell, carbon steel casing in contact with a concentrated formation brine corrodes and the fiberglass casing is superior again. Fiberglass casing enables electromagnetic logging for exploration and reservoir monitoring, but it requires the development of new logging methods. Here we present a technique for the detection of integrity of magnetic cement behind resistive fiberglass casing. We demonstrate that an optimized induction logging tool can detect small changes in the magnetic permeability of cement through a non-conductive casing in a vertical (or horizontal) well. We determine both the integrity and solidification state of the cement-filled annulus behind the casing. Changes in magnetic permeability influence mostly the real part of the vertical component of the magnetic field. The signal amplitude is more sensitive to a change in the magnetic properties of the cement, rather than the signal phase. Our simulations showed that optimum separation between the transmitter and receiver coils ranged from 0.25 to 0.6 m, and the most suitable magnetic field frequencies varied from 0.1 to 10 kHz. A high-frequency induction probe operating at 200 MHz can measure the degree of solidification of cement. The proposed method can detect borehole cracks filled with cement, incomplete lift of cement, casing eccentricity, and other borehole inhomogeneities.


2006 ◽  
Vol 46 (1) ◽  
pp. 435
Author(s):  
B. Hooper ◽  
B. Koppe ◽  
L. Murray

The Latrobe Valley in Victoria’s Gippsland Basin is the location of one of Australia’s most important energy resources—extremely thick, shallow brown coal seams constituting total useable reserves of more than 50,000 million tonnes. Brown coal has a higher moisture content than black coal and generates more CO2 emissions per unit of useful energy when combusted. Consequently, while the Latrobe Valley’s power stations provide Australia’s lowest- cost bulk electricity, they are also responsible for over 60 million tonnes of CO2 emissions per year—over half of the Victorian total. In an increasingly carbon constrained world the ongoing development of the Latrobe Valley brown coal resource is likely to require a drastic reduction in the CO2 emissions from new coal use projects—and carbon capture and storage (CCS) has the potential to meet such deep cuts. The offshore Gippsland Basin, the site of major producing oil and gas fields, has the essential geological characteristics to provide a high-volume, low-cost site for CCS. The importance of this potential to assist the continuing use of the nation’s lowest-cost energy source prompted the Australian Government to fund the Latrobe Valley CO2 Storage Assessment (LVCSA).The LVCSA proposal was initiated by Monash Energy (formerly APEL, and now a 100% subsidiary of Anglo American)—the proponent of a major brown coal-to-liquids plant in the Latrobe Valley. Monash Energy’s plans for the 60,000 BBL per day plant include CCS to store about 13 million tonnes of CO2 per year. The LVCSA, undertaken for Monash Energy by the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC), provides a medium to high-level technical and economic characterisation of the volume and cost potential for secure geosequestration of CO2 produced by the use of Latrobe Valley brown coal (Hooper et al, 2005a). The assessment’s scope includes consideration of the interaction between CO2 injection and oil and gas production, and its findings have been publicly released for use by CCS proponents, oil and gas producers and all other interested parties as an executive summary, (Hooper et al, 2005b), a fact sheet (Hooper et al, 2005c) and a presentation (Hooper et al, 2005d)).The LVCSA identifies the key issues and challenges for implementing CCS in the Latrobe Valley and provides a reference framework for the engagement of stakeholders. In effect the LVCSA constitutes a pre-feasibility study for the implementation of geosequestration in support of the continuing development of Victoria’s brown coal resources.The LVCSA findings indicate that the Gippsland Basin has sufficient capacity to safely and securely store large volumes of CO2 and may provide a viable means of substantially reducing greenhouse gas emissions from coal-fired power plants and other projects using brown coal in the Latrobe Valley. The assessment also indicates that CO2 injection could well be designed to avoid any adverse impact on adjacent oil and gas production, so that CO2 injection can begin near fields that have not yet come to the end of their productive lives. However, CCS proposals involving adjacent injection and production will require more detailed risk management strategies and continuing cooperation between prospective injectors and existing producers.


Sign in / Sign up

Export Citation Format

Share Document