scholarly journals Camelina and Crambe Oil Crops for Bioeconomy—Straw Utilisation for Energy

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1503 ◽  
Author(s):  
Michał Krzyżaniak ◽  
Mariusz J. Stolarski ◽  
Łukasz Graban ◽  
Waldemar Lajszner ◽  
Tomasz Kuriata

Agriculture can provide biomass for bioproducts, biofuels and as energy feedstock with a low environmental impact, derived from carbohydrate, protein and oil annual crops, as well from lignocellulosic crops. This paper presents the thermophysical and chemical features of camelina and crambe straw depending on nitrogen fertilisation rate with a view to their further use in a circular bioeconomy. A two-factorial field experiment was set up in 2016, with camelina and crambe as the first factor and the N fertilizer rate (0, 60 and 120 kg·ha−1·N) as the second factor. Ash content in crambe straw (6.97% d.m.) was significantly higher than in camelina straw (4.79% d.m.). The higher heating value was higher for the camelina (18.50 MJ·kg−1·d.m.) than for the crambe straw (17.94 MJ·kg−1·d.m.). Sulphur content was also significantly higher in camelina than in crambe straw. An increase in nitrogen content with increasing fertilisation rate was visible in the straw of both species (from 1.19 to 1.33% d.m., for no fertilisation and for a rate of 120 kg·ha−1·N, respectively). Crambe straw contained more than five times more chlorine than camelina straw. In conclusion, despite certain adverse properties, camelina and crambe straw can be an alternative to other types of biomass, both for direct combustion, gasification and in the production of second-generation biofuels.

2013 ◽  
Vol 59 (Special Issue) ◽  
pp. S60-S64 ◽  
Author(s):  
V. Kažimírová ◽  
T. Brestovič ◽  
R. Opáth

The presented contribution deals with the quantification of moisture, combustible matter content, ash content and higher heating value of the selected types of biomass used for the heat production by direct combustion. The moisture, combustible matter, and ash contents were determined by gravimetric analysis in accordance with the established standards. The average moisture of the materials examined varied from 4.35 to 9.17%; the combustible matter content in the original samples ranged from 79.46 to 93.51%; the ash content ranged from 2.14 to 11.28%. Higher heating values of the examined types of biomass varied from 14,996 to 17,641 kJ/kg. The main contribution of the thesis is the acquisition of values usable in subsequent theoretical and practical efforts to increase the efficiency of the heat production by direct combustion of biomass. The results are useable in biomass boiler design and in identifying suitable conditions for combustion, including the service parameters of biomass boilers.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1805
Author(s):  
Neel Patel ◽  
Bishnu Acharya ◽  
Prabir Basu

Waste seaweed that is collected at coastal regions of maritime provinces in Canada is creating ecological problems as it promotes an anoxic event, which produces nearly zero dissolved oxygen in water along with hydrogen sulfide emission. The work done in this study attempts to address this issue by producing a coal-like solid hydrochar and nutritious liquid slurry (processed water) by employing a rather recent thermo-chemical process called hydrothermal carbonization (HTC) on the seaweed. The HTC was carried out in a batch reactor system for three different reaction temperatures, 180 °C, 200 °C, 220 °C, and three different reaction times, 30, 60, and 120 min. Each of the produced hydrochars was characterized by different analytical methods. The effects of the process conditions on the yield and the properties of the hydrochar and process water were examined. The hydrochar produced at 220 °C and 120 min showed the highest carbon content (48.5%) and heating value (18.93 MJ/kg). The energy density and carbon to nitrogen (C/N) ratio in the hydrochar increased significantly as compared to raw seaweed. Moreover, HTC reduced the ash yield and volatile compounds of the seaweed. Thus, hydrochar can be used as a fuel for direct combustion, in soil remediation, or in carbon sequestration applications.


2018 ◽  
Vol 43 (3) ◽  
pp. 243-260
Author(s):  
Nurudeen Abdul Rahman ◽  
Asamoah Larbi ◽  
Andrews Opoku ◽  
Francis Marthy Tetteh ◽  
Irmgard Hoeschle-Zeledon

2017 ◽  
Vol 25 (5) ◽  
pp. 301-310 ◽  
Author(s):  
Jetsada Posom ◽  
Panmanas Sirisomboon

This research aimed to determine the higher heating value, volatile matter, fixed carbon and ash content of ground bamboo using Fourier transform near infrared spectroscopy as an alternative to bomb calorimetry and thermogravimetry. Bamboo culms used in this study had circumferences ranging from 16 to 40 cm. Model development was performed using partial least squares regression. The higher heating value, volatile matter, fixed carbon and ash content were predicted with coefficients of determination (r2) of 0.92, 0.82, 0.85 and 0.51; root mean square error of prediction (RMSEP) of 122 J g−1, 1.15%, 1.00% and 0.77%; ratio of the standard deviation to standard error of validation (RPD) of 3.66, 2.55, 2.62 and 1.44; and bias of 14.4 J g−1, −0.43%, 0.03% and −0.11%, respectively. This report shows that near infrared spectroscopy is quite successful in predicting the higher heating value, and is usable with screening for the determination of fixed carbon and volatile matter. For ash content, the method is not recommended. The models should be able to predict the properties of bamboo samples which are suitable for achieving higher efficiency for the biomass conversion process.


2020 ◽  
Vol 24 (3) ◽  
pp. 112-118
Author(s):  
Dace Âriņa ◽  
Rūta Bendere ◽  
Gintaras Denafas ◽  
Jānis Kalnačs ◽  
Mait Kriipsalu

AbstractThe authors determined the morphological composition of refuse derived fuel (RDF) produced in Latvia and Lithuania by manually sorting. The parameters of RDF (moisture, net calorific value, ash content, carbon, nitrogen, hydrogen, sulphur, chlorine, metals) was determined using the EN standards. Comparing obtained results with data from literature, authors have found that the content of plastic is higher but paper and cardboard is lower than typical values. Results also show that the mean parameters for RDF can be classified with the class codes: Net heating value (3); chlorine (3); mercury (1), and responds to limits stated for 3rd class of solid recovered fuel. It is recommended to separate biological waste at source to lower moisture and ash content and increase heating value for potential fuel production from waste.


Solid Earth ◽  
2014 ◽  
Vol 5 (1) ◽  
pp. 477-483 ◽  
Author(s):  
D. Kalderis ◽  
M. S. Kotti ◽  
A. Méndez ◽  
G. Gascó

Abstract. Biochar is the carbon-rich product obtained when biomass, such as wood, manure or leaves, is heated in a closed container with little or no available air. In more technical terms, biochar is produced by so-called thermal decomposition of organic material under limited supply of oxygen (O2), and at relatively low temperatures (< 700 °C). Hydrochar differentiates from biochar because it is produced in an aqueous environment, at lower temperatures and longer retention times. This work describes the production of hydrochar from rice husks using a simple, safe and environmentally friendly experimental set-up, previously used for degradation of various wastewaters. Hydrochars were obtained at 200 °C and 300 °C and at residence times ranging from 2 to 16 h. All samples were then characterized in terms of yield, surface area, pH, conductivity and elemental analysis, and two of them were selected for further testing with respect to heating values and heavy metal content. The surface area was low for all hydrochars, indicating that porous structure was not developed during treatment. The hydrochar obtained at 300 °C and 6 h residence times showed a predicted higher heating value of 17.8 MJ kg−1, a fixed carbon content of 46.5% and a fixed carbon recovery of 113%, indicating a promising behaviour as a fuel.


2019 ◽  
Vol 157 (9-10) ◽  
pp. 693-700
Author(s):  
L. J. Chen ◽  
C. S. Li ◽  
Q. Feng ◽  
Y. P. Wei ◽  
Y. Zhao ◽  
...  

AbstractAlthough numerous studies have investigated the individual effects of salinity, irrigation and fertilization on soil microbial communities, relatively less attention has been paid to their combined influences, especially using molecular techniques. Based on the field of orthogonal designed test and deoxyribonucleic acid sequencing technology, the effects of saline water irrigation amount, salinity level of irrigation water and nitrogen (N) fertilizer rate on soil bacterial community structure were investigated. The results showed that the irrigation amount was the most dominant factor in determining the bacterial richness and diversity, followed by the irrigation water salinity and N fertilizer rate. The values of Chao1 estimator, abundance-based coverage estimator and Shannon indices decreased with an increase in irrigation amount while increased and then decreased with an increase in irrigation water salinity and N fertilizer rate. The highest soil bacterial richness and diversity were obtained under the least irrigation amount (25 mm), medium irrigation water salinity (4.75 dS/m) and medium N fertilizer rate (350 kg/ha). However, different bacterial phyla were found to respond distinctively to these three factors: irrigation amount significantly affected the relative abundances of Proteobacteria and Chloroflexi; irrigation water salinity mostly affected the members of Actinobacteria, Gemmatimonadetes and Acidobacteria; and N fertilizer rate mainly influenced the Bacteroidetes' abundance. The results presented here revealed that the assessment of soil microbial processes under combined irrigation and fertilization treatments needed to be more careful as more variable consequences would be established by comparing with the influences based on an individual factor, such as irrigation amount or N fertilizer rate.


FLORESTA ◽  
2015 ◽  
Vol 45 (4) ◽  
pp. 713 ◽  
Author(s):  
Diego Aleixo Silva ◽  
Gabriela Tami Nakashima ◽  
João Lúcio Barros ◽  
Alessandra Luzia Da Roz ◽  
Fabio Minoru Yamaji

O objetivo deste trabalho foi caracterizar a produção de briquetes feita a partir de quatro diferentes biomassas residuais. Foram utilizados os resíduos de serragem de Eucalyptus sp, serragem de Pinus sp, bagaço de cana-de-açúcar (Saccharum officinarum L.) e palha de cana-de-açúcar. Os resíduos foram tratados para que obtivessem 12% de umidade e uma granulometria inferior a 1,70 mm. Foram produzidos 15 briquetes para cada um dos quatro tratamentos. A pressão utilizada foi de 1250 kgf.cm-2 durante 30 segundos. Os briquetes obtiveram densidades que oscilaram 0,88 a 1,11 g.cm-3. Isto representou uma faixa de 5 a 14 vezes a menos de ocupação de volume para uma mesma quantidade de massa. O poder calorifico foi de 19.180 J.kg-1 e 20.315 J.kg-1 para as serragens de eucalipto e pinus respectivamente. Para o bagaço e palha de cana os valores foram de 18.541 J.kg-1 e 15.628 J.kg-1. A palha da cana-de-açúcar apresentou um teor de cinzas de 12%. As expansões dos tratamentos oscilaram 4 a 9% e as resistências mecânicas variaram de 1,215 MPa à 0,270 MPa. Todos os briquetes se mostraram resistentes para um empilhamento superior a 10 m de altura. O procedimento adotado pode ajudar a diminuir o espaço de estocagem e de transporte. AbstractThis research aims to characterize the production of briquettes from four different biomasses. We used residues such as Eucalyptus sp sawdust, Pinus sp sawdust , sugarcane bagasse (Saccharum officinarum L.) and sugarcane straw. The residues were treated to obtain 12% moisture content and particle size less than 1.70 mm. We produced 15 briquettes for each treatment. The pressure used was 1250 kgf.cm-2 for 30 seconds. The briquettes obtained densities ranged from 0.88 to 1.11 g.cm-3. This represented a range of 5 to 14 times less volume occupancy for the same amount of mass. The high heating value (HHV) was 19,180 J.kg-1 and 20,315 J.kg-1 for eucalyptus and pine sawdust respectively. The HHV for the bagasse was 18,541 J.kg-1 and for straw was 15,628 J.kg-1. The straw presented an ash content of 12%. The expansions of the treatments ranged 4 to 9% and mechanical resistances ranging from 1,215 MPa to 0,270 MPa. All briquettes were resistant to a higher stacking to 10 m high. The methods can help to decrease the space of storage and transport.Keywords: Waste; biofuel; energy; compression; stacking.


2016 ◽  
Vol 29 (2) ◽  
pp. 1037-1046 ◽  
Author(s):  
Hilary Redden ◽  
John J Milledge ◽  
H. Christopher Greenwell ◽  
Philip W. Dyer ◽  
Patricia J Harvey
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document