scholarly journals Comparative Evaluation of the Effect of Vehicle Parameters on Fuel Consumption under NEDC and WLTP

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4245 ◽  
Author(s):  
Hyeonjik Lee ◽  
Kihyung Lee

Higher speeds, faster acceleration and longer duration need a more realistic driving cycle. As a result, a new test procedure that reflects real-world driving conditions has been applied since 2017, and the previous development environment optimized for NEDC has also changed. In this study, several factors and technologies relating to fuel consumption, such as vehicle weight, tire rolling resistance, drag of aerodynamic, stop–start, and 48 V mild hybrid system, are evaluated as per the new worldwide harmonized light vehicles test procedure (WLTP) and compared with that of the previous European driving cycle (NEDC). The impact of the vehicle weight is increased in case of the WLTP due to faster acceleration compared to that under NEDC. The influence of aerodynamic force is very important as the average and maximum speed are increased. Meanwhile, the impact of idle stop–start technology is lower compared to that under NEDC due to the reduction in idle operation time. The 48-V mild hybrid system is still expected to play a role as a powerful fuel consumption reduction technology under new WLTP by applying energy regeneration, minor torque assist, and extended idle stop–start.

2020 ◽  
Vol 11 (1) ◽  
pp. 17 ◽  
Author(s):  
Huijun Liu ◽  
Fenfang Chen ◽  
Yuxiang Tong ◽  
Zihang Wang ◽  
Xiaoli Yu ◽  
...  

The aging of lithium-ion batteries (LIBs) is a crucial issue and must be investigated. The aging rate of LIBs depends not only on the material and electrochemical performance but also on the working conditions. In order to assess the impact of vehicle driving conditions, including the driving cycle, ambient temperature, charging mode, and trip distance on the battery life cycle, this paper first establishes an electric vehicle (EV) energy flow model to solve the operating parameters of the battery pack while working. Then, a powertrain test is carried out to verify the simulation model. Based on the simulated data under different conditions, the battery capacity fade process is estimated by using a semi-empirical aging model. The mileage (Ф) traveled by the vehicle before the end of life (EOL) of the battery pack is then calculated and taken as the evaluation index. The results indicate that the Ф is higher when the vehicle drives the Japanese chassis dynamometer test cycle JC08 than in the New European Driving Cycle (NEDC) and the Federal Test Procedure (FTP-75). The Ф will be dramatically reduced at both low and high ambient temperatures. Fast charging can increase the Ф at low ambient temperatures, whereas long trip driving can always increase Ф to varying degrees.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3064 ◽  
Author(s):  
José Huertas ◽  
Michael Giraldo ◽  
Luis Quirama ◽  
Jenny Díaz

Type-approval driving cycles currently available, such as the Federal Test Procedure (FTP) and the Worldwide harmonized Light vehicles Test Cycle (WLTC), cannot be used to estimate real fuel consumption nor emissions from vehicles in a region of interest because they do not describe its local driving pattern. We defined a driving cycle (DC) as the time series of speeds that when reproduced by a vehicle, the resulting fuel consumption and emissions are similar to the average fuel consumption and emissions of all vehicles of the same technology driven in that region. We also declared that the driving pattern can be described by a set of characteristic parameters (CPs) such as mean speed, positive kinetic energy and percentage of idling time. Then, we proposed a method to construct those local DC that use fuel consumption as criterion. We hypothesized that by using this criterion, the resulting DC describes, implicitly, the driving pattern in that region. Aiming to demonstrate this hypothesis, we monitored the location, speed, altitude, and fuel consumption of a fleet of 15 vehicles of similar technology, during 8 months of normal operation, in four regions with diverse topography, traveling on roads with diverse level of service. In every region, we considered 1000 instances of samples made of m trips, where m varied from 4 to 40. We found that the CPs of the local driving cycle constructed using the fuel-based method exhibit small relative differences (<15%) with respect to the CPs that describe the driving patterns in that region. This result demonstrates the hypothesis that using the fuel based method the resulting local DC exhibits CPs similar to the CPs that describe the driving pattern of the region under study.


Author(s):  
Jeff Howell ◽  
David Forbes ◽  
Martin Passmore

The aerodynamic drag characteristics of a passenger car have, typically, been defined by a single parameter: the drag coefficient at a yaw angle of 0°. Although this has been acceptable in the past, it does not provide an accurate measure of the effect of aerodynamic drag on fuel consumption because the important influence of the wind has been excluded. The result of using drag coefficients at a yaw angle of 0° produces an underprediction of the aerodynamic component of fuel consumption that does not reflect the on-road conditions. An alternative measure of the aerodynamic drag should take into account the effect of non-zero yaw angles, and a variant of wind-averaged drag is suggested as the best option. A wind-averaged drag coefficient is usually derived for a particular vehicle speed using a representative wind speed distribution. In the particular case where the road speed distribution is specified, such as for a driving cycle to determine fuel economy, a relevant drag coefficient can be derived by using a weighted road speed. An effective drag coefficient is determined with this approach for a range of cars using the proposed test cycle for the Worldwide Harmonised Light Vehicle Test Procedure, WLTP. The wind input acting on the car has been updated for this paper using recent meteorological data and an understanding of the effect of a shear flow on the drag loading obtained from a computational fluid dynamics study. In order to determine the different mean wind velocities acting on the car, a terrain-related wind profile has also been applied to the various phases of the driving cycle. An overall drag coefficient is derived from the work done over the full cycle. This cycle-averaged drag coefficient is shown to be significantly higher than the nominal drag coefficient at a yaw angle of 0°.


Author(s):  
Yiğit Türe ◽  
Cengiz Türe

The European Union (EU), which realizes one-quarter of the automobile production in the world, has made legal regulations to minimize fuel consumption and CO2 emissions in the automotive sector, to prevent global warming and climate change. Life cycle analysis for passenger cars revealed that 90% of this effect is caused by the driving phase of the vehicles. One of the practices used in the automotive industry to minimize the impact of these factors is to reduce the vehicle mass as much as possible. Aluminum (Al) and magnesium (Mg) are increasingly preferred lightweight materials, since the weight is a critical design element for automobile production. This study aims to evaluate the environmental and economic impacts of fuel consumption, fuel expense, and CO2 emission resulting from the driving cycle by creating a mathematical model of the weight savings achieved with Al and Mg substitution in the passenger car fleet produced in the EU. The results show that the average weight reduction per vehicle achieved by substituting light metals in passenger car production in the EU over the past 20 years has reached approximately 11.2% and that the positive effect on fuel consumption and CO2 emissions in the driving cycle will contribute to environmentally and economically sustainable road transport.


Author(s):  
Chris Brockbank ◽  
Will Body

Flywheel based mechanical hybrid technology is under development for Motorsport, Automotive and Commercial Vehicle applications. Originally a European development, North American mechanical hybrid applications are now underway. The mechanical hybrid system recovers kinetic energy from the vehicle during braking to a high-speed, rotating flywheel via a variable drive system. When compared to an electric motor / battery arrangement, the mechanical hybrid system offers benefits in cost, weight, package, efficiency and ultimately fuel consumption. A number of UK Government funded projects applying flywheel based mechanical hybrid systems are ongoing, developing the technology and building mechanical hybrid equipped demonstrator vehicles. Participants include OEM’s Jaguar Land Rover, Ford, JCB and Optare using advanced technology from Allison Transmission Inc, Flybrid Systems, Ricardo, SKF and Torotrak. The Torotrak torque controlled, variable drive technology is a key component within the mechanical hybrid system. As part of the development process, all aspects of the mechanical hybrid system are under investigation (such as the required energy storage, rates of energy recovery, etc) including the variety of different physical architectures for the variable drive system. Multiple configuration options are available including direct drive, epicyclic shunted, range extended CVT and epicyclic shunted IVT arrangements. In addition, the flywheel and variable drive system can be connected to the powertrain in a variety of different locations from engine to transmission to final drive. This paper describes the simulation of the mechanical hybrid system with focus on the impact on the fuel consumption benefit, over multiple drive cycles, of the variable drive configuration, the location of the variable drive & flywheel system and the control strategy options.


2012 ◽  
Vol 16 (3) ◽  
pp. 141
Author(s):  
Juli Mrihardjono ◽  
Nazaruddin Sinaga

Juli Mriharjono, Nazaruddin Sinaga, in this paper explain that a driving cycle model can be used to estimate fuel consumption and exhaust gas emission. Driving cycle varies significantly for traffic conditions. Testing of driving cycle model, for a specific vehicle, is needed so that able to be used as fuel consumption and emissions estimation on real traffics. This paper studied driving cycle model in a laboratory. The EPA standard was reffered as the testing procedure. The vehicle used was Honda City 1.5L fueling with gasoline (premium - in Indonesia). The result shows that driving cycle model profile meets with the EPA standard. Changing gears, which affect to vehicle speed, was not affect significantly to fuel consumption which indicated by constant AFR during the cycle. The factors that cause the difference speed of vehicle were gas pedal operated manually, timing of changing gear, and gear operation time duration. Keywords: Driving cycle, exhaust gas emissions, fuel consumption


2017 ◽  
Vol 19 (8) ◽  
pp. 873-885 ◽  
Author(s):  
José Galindo ◽  
Hector Climent ◽  
Olivier Varnier ◽  
Chaitanya Patil

Nowadays, internal combustion engine developments are focused on efficiency optimization and emission reduction. Increasing focus on world harmonized ways to determine the performance and emissions on Worldwide harmonized Light vehicles Test Procedure cycles, it is essential to optimize the engines for transient operations. To achieve these objectives, the downsized or downspeeded engines are required, which can reduce fuel consumption and pollutant emissions. However, these technologies ask for efficient charging systems. This article consists of the study of different boosting architectures (single stage and two stage) with a combination of different charging systems like superchargers and e-boosters. A parametric study has been carried out with a zero-dimensional engine model to analyze and compare different architectures on the different engine displacements. The impact of thermomechanical limits, turbo sizes and other engine development option characterizations is proposed to improve fuel consumption, maximum power and performance of the downsized/downspeeded diesel engines during the transient operations.


2019 ◽  
Vol 179 (4) ◽  
pp. 186-191
Author(s):  
Grzegorz KOSZAŁKA ◽  
Andrzej SZCZOTKA ◽  
Andrzej SUCHECKI

Fuel consumption achieved in the New European Driving Cycle (NEDC) could be 50% lower than the fuel consumption in real driving conditions and in the case of emissions of regulated toxic compounds the differences could even be much greater. In order to bring the results achieved in official tests closer to real life figures, the European Commission introduced in 2017 the Worldwide Harmonized Light Vehicles Test Procedure (WLTP), which replaced the NEDC. In this article the results of fuel consumption and exhaust emissions for 3 cars fitted with engines of the same displacement but with direct and indirect gasoline injection, determined according to the NEDC and WLTC were presented. The results show that the effect of driving cycle on the fuel consumption is equivocal – for one car, fuel consumption was higher in the WLTC; for the other one in the NEDC; and for the third one, fuel consumption achieved in both driving cycles was practically the same. Emissions of regulated exhaust compounds, except for THC, obtained in the WLTC were higher than in the NEDC driving cycle.


2020 ◽  
Vol 12 (14) ◽  
pp. 5747
Author(s):  
Xinglong Liu ◽  
Fuquan Zhao ◽  
Han Hao ◽  
Kangda Chen ◽  
Zongwei Liu ◽  
...  

The switching from new European driving cycle (NEDC) to worldwide harmonized light vehicles test procedure (WLTP) will affect the energy consumption of plug-in hybrid electric vehicle (PHEV), and then affect the new energy vehicle (NEV) credit regulation and subsidy policy for PHEVs. This paper reveals the impact on energy consumption, NEV credit regulation, and subsidy policy for PHEV in the Chinese market of the switching from NEDC to WLTP based on qualitative analysis and quantitative calculation. The results show that the WLTP procedure is stricter than NEDC in the determination of road load, test mass, driving resistance forces, and tire selection. Firstly, the electricity consumption (EC) of PHEV in charge-depleting mode (CD) under the WLTP procedure is 26% higher than NEDC on average, which makes the all-electric range (AER) significantly lower under WLTP. The weight EC tested in the WLTP procedure is higher than NEDC. Secondly, the fuel consumption (FC) of PHEV in CD mode is related to the adjustment of the engine management system (EMS) and the size of battery energy under the WLTP procedure. For the FC in the charge-sustaining (CS) mode of PHEV under the WLTP procedure is 20% higher than NEDC on average. However, the weight fuel consumption of PHEVs under WLTP with a long AER may be lower than that of NEDC due to the characteristics of utility factor in the WLTP procedure. Thirdly, most PHEVs fail to meet the requirements of 50 km AER due to the switching of the test procedures. However, the Chinese government reduced the technical specification of PHEV’s AER under the WLTP procedure to 43 km to support the development of PHEV technology. It ensures that the switching of test procedures does not change the treatment that they could obtain, the NEV credits, and subsidy as a NEV in China. However, the increasing of the EC in CD mode and the FC in CS mode under the WLTP procedure makes the PHEV obtain lower credit and subsidy multiple compared with NEDC procedure.


Sign in / Sign up

Export Citation Format

Share Document