scholarly journals Technoeconomic Analysis and Environmental Impact of Electric Vehicle Introduction in Taxis: A Case Study of Mexico City

2021 ◽  
Vol 12 (3) ◽  
pp. 93
Author(s):  
Daniel Arturo Maciel Fuentes ◽  
Eduardo Gutiérrez González

In recent decades, urban air pollution has increased considerably in Mexico City, leading to harmful effects on the ecosystem. To reduce pollutant emissions, new sustainable technologies have been adopted in the transport sector. To date, no studies have conducted a technoeconomic analysis of the environmental impact of electric vehicles (EVs) in regard to taxis in Mexico. To address this gap in the research, this study aimed to perform a cost-environmental impact assessment of electric taxi introduction in Mexico City using the life-cycle cost (LCC) methodology and the greenhouse gas (GHG) emissions assessment. Furthermore, a sensitivity analysis was performed to identify parameters with the greatest influence on the LCC. The LCC of EVs was found to be larger than that of internal combustion vehicles (ICVs); the acquisition cost was identified as the greatest contributor to the total LCC, followed by the maintenance cost. Worldwide, mixed results have been reported due to differences in the use of local parameters and values. To promote EVs, it is necessary to reduce either acquisition costs or battery costs. The environmental analysis showed that there is only a slight reduction in GHG emissions with electric taxi introduction. Nevertheless, cleaner renewable energy sources must be adopted and considered in order to achieve a much greater reduction and take full advantage of the benefits of EVs.

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4509 ◽  
Author(s):  
Janusz Adamczyk ◽  
Robert Dylewski

Energy saving is at the heart of sustainable development in the context of climate change. Saving energy is not only the amount of energy that we save, but also reducing emissions of pollutants to the atmosphere, as well as reducing the consumption of energy resources that are used to produce energy. Reducing pollutant emissions and the use of energy resources can be achieved by increasing the use of renewable energy sources, but at present, this method of obtaining energy in the world is not representative. It should be noted that renewable energy devices throughout the life cycle generate environmental impact. Similar to this situation, the building’s thermo-modernization, which is focused on reducing the pressure on the environment of the building’s user, also has an impact on the environment throughout the building’s life cycle. Determining this environmental impact and ecological or economic benefits or costs is the purpose of the following article. Thermo-modernization of the building, for the purposes of the article, is understood as thermal insulation of walls and replacement of the heat source for heating the building and preparation of hot utility water. The need to replace the heat source with a much more ecological one results in Poland from provincial legal regulations announced by virtue of a resolution. In the study, data from the Ecoinvent data library included in the SimaPro computer program was used for the LCA (Life Cycle Assessment) analysis. As a result of thermo-modernization of the representative buildings, large ecological benefits were obtained, while economic costs remain at a high level.


2013 ◽  
Vol 80 (3) ◽  
pp. 300-308 ◽  
Author(s):  
Matteo Guerci ◽  
Luciana Bava ◽  
Maddalena Zucali ◽  
Anna Sandrucci ◽  
Chiara Penati ◽  
...  

Agriculture and animal husbandry are important contributors to global emissions of greenhouse (GHG) and acidifying gases. Moreover, they contribute to water pollution and to consumption of non-renewable natural resources such as land and energy. The Life Cycle Assessment (LCA) methodology allows evaluation of the environmental impact of a process from the production of inputs to the final product and to assess simultaneously several environmental impact categories among which GHG emissions, acidification, eutrophication, land use and energy use. The main purpose of this study was to evaluate, using the LCA methodology, the environmental impact of milk production in a sample of 41 intensive Italian dairy farms and to identify, among different farming strategies, those associated with the best environmental performances. The functional unit was 1 kg Fat and Protein Corrected Milk (FPCM). Farms showed characteristics of high production intensity: FPCM, expressed as tonnes per hectare, was 30·8±15·1. Total GHG emission per kg FPCM at farm gate was 1·30±0·19 kg CO2 eq. The main contributors to climate change potential were emissions from barns and manure storage (50·1%) and emissions for production and transportation of purchased feeds (21·2%). Average emission of gases causing acidification to produce 1 kg FPCM was 19·7±3·6 g of SO2 eq. Eutrophication potential was 9·01±1·78 ${\rm PO}_{\rm 4}^{{\rm 3} -} {\rm eq}.$ per kg FPCM on average. Farms from this study needed on average 5·97±1·32 MJ per kg FPCM from non-renewable energy sources. Energy consumption was mainly due to off-farm activities (58%) associated with purchased factors. Land use was 1·51±0·25 m2 per kg FPCM. The farming strategy based on high conversion efficiency at animal level was identified as the most effective to mitigate the environmental impact per kg milk at farm gate, especially in terms of GHG production and non-renewable energy use per kg FPCM.


2020 ◽  
Author(s):  
Markus Millinger ◽  
Philip Tafarte ◽  
Matthias Jordan ◽  
Alena Hahn ◽  
Kathleen Meisel ◽  
...  

<p>The increase of variable renewable energy sources (VRE), i.e. wind and solar power, may lead to a certain mismatch between power demand and supply. At the same time, in order to decarbonise the heat and transport sectors, power-based solutions are often seen as promising option, through so-called sector coupling. At times when VRE power supply exceeds demand, the surplus power could be used for producing liquid and gaseous electrofuels. The power is used for electrolysis, producing hydrogen, which can in turn be used either directly or combined with a carbon source to produce hydrocarbon fuels.</p><p>Here, we analyse the potential development of surplus power for the case of Germany, at an ambitious VRE expansion until 2050 and perform a cost analysis of electrofuels at different production levels using sorted residual load curves. These are then compared to biofuels and electric vehicles with the aid of an optimisation model, considering both cost- and greenhouse gas (GHG)-optimal options for the main transport sectors in Germany.</p><p>We find that, although hydrocarbon electrofuels are more expensive than their main renewable competitors, i.e. biofuels, they are most likely indispensable in addition for reaching climate targets in transport. However, the electrofuel potential is constrained by the availability of both surplus power and carbon. In fact, the surplus power potential is projected to remain limited even at currently ambitious VRE targets for Germany and carbon availability is lower in an increasingly renewable energy system unless direct air capture is deployed. In addition, as the power mix is likely to contain fossil fuels for decades to come, electrofuels based on power directly from the mix with associated conversion losses would cause higher GHG-emissions than the fossil transport fuel reference until a very high share of renewables in the power source is achieved. In contrast, electric vehicles are a more climate competitive option under the projected power mix with remaining fossil fuel fractions, due to a superior fuel economy and thereby lower costs and emissions.</p><p>As part of the assessment, we quantify the greenhouse gas abatement costs for different well-to-wheel pathways and provide an analysis and recommendations for a transition to sustainable transport.</p>


2021 ◽  
Vol 25 (1) ◽  
pp. 367-381
Author(s):  
Ieva Pakere ◽  
Toms Prodanuks ◽  
Agris Kamenders ◽  
Ivars Veidenbergs ◽  
Stefan Holler ◽  
...  

Abstract The European Union (EU) has set ambitious targets to increase the overall energy efficiency and decrease the environmental impact by introducing the ‘Green Deal.’ It is an EU plan for the transition to zero greenhouse gas emissions. The overall data analyses of GHG emissions per capita and GDP value in different EU countries show that the GDP increase in 2010–2017 has not increased GHG emissions. Therefore, the link between the GDP increase through energy resource usage increase has been eliminated. However, not all of the EU 27 member states contributed to the overall EU green policy equally. The article presents the methodology for the energy and environmental performance status analyses by evaluating nine different indicators (share of renewable energy, greenhouse gases per GDP, energy intensity, primary efficiency, industry efficiency, energy consumption in households, space heating efficiency, pollutant emissions from transport and specific energy consumption of transport sector) for EU member states. Indicators have been tested through correlation analyses. The use of multidimensional Energy and climate policy indicator has been proposed to rank the performance of different EU countries. The results show that the countries with the highest score in climate and energy indicator values are Sweden, Denmark, Latvia, Austria, Finland, Ireland, and Lithuania. The lowest obtained values are Bulgaria, Poland, Hungary, the Czech Republic, and France.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1712 ◽  
Author(s):  
Kathleen Meisel ◽  
Markus Millinger ◽  
Karin Naumann ◽  
Franziska Müller-Langer ◽  
Stefan Majer ◽  
...  

With the Renewable Energy Directive 2018/2001 (RED II), adopted in December 2018, the EU is continuing the political framework for the use of renewable energy sources in the transport sector for the period from 2021 to 2030. At the same time, the German federal government has set a target of reducing greenhouse gas (GHG) emissions in the transport sector by at least 40% to 42% by 2030 compared to the 1990 GHG level. To investigate the possible effects of the European and national requirements on the German GHG quota, cost-optimal fuel mixes were modelled to achieve the GHG targets of 26 fuel options in each of the nine different scenarios. The results show clear differences between the scenarios that implement the RED II targets (including 14% renewables in transport by 2030) and those that implement the climate protection target (40–42% GHG reduction compared to 1990 by 2030). If only the minimum requirements of RED II are met, the German climate protection target is clearly missed without further measures. In order to achieve the climate protection target, a significant reduction in the final energy consumption in transport is required, as well as a very high GHG quota of 34.5%, meaning a high proportion of renewables of ca. 40% and using almost all the fuel options considered.


2021 ◽  
Vol 13 (18) ◽  
pp. 10215
Author(s):  
Vaclovas Miškinis ◽  
Arvydas Galinis ◽  
Inga Konstantinavičiūtė ◽  
Vidas Lekavičius ◽  
Eimantas Neniškis

The deployment of renewable energy sources (RES) is an essential strategic objective of sustainable energy development in Estonia, Latvia and Lithuania. Their growing contribution to the total primary energy supply can significantly facilitate the transition to a low-carbon economy. The paper provides findings from an in-depth comparative analysis of RES deployment trends during 2010–2019 in the Baltic countries in the context of energy policy documents of the European Union (EU). The dynamics of targeted RES indicators according to the Renewables Directive 2009/28/EC and National Programmes and the role of renewable energies in mitigating climate change are analysed. A key role of the heating and cooling sector in deploying RES is highlighted and a necessity to implement radical changes in the transport sector of the Baltic countries is revealed. The paper examines changes in energy-related greenhouse gas (GHG) emissions and the impact of driving factors in Estonia, Latvia, Lithuania and other countries of the Baltic Sea Region (BSR). The Kaya identity and the logarithmic mean Divisia index (LMDI) method are used for the decomposition analysis. Based on the analysis conducted, the impact of population change, economic growth, decline of energy intensity, RES deployment and reduction of emission intensity on change of GHG emissions in countries of the BSR and, on average, in the EU-27 during 2010–2019 is revealed.


2019 ◽  
Vol 11 (18) ◽  
pp. 4998 ◽  
Author(s):  
Federica Borgonovo ◽  
Cecilia Conti ◽  
Daniela Lovarelli ◽  
Valentina Ferrante ◽  
Marcella Guarino

Ammonia (NH3), methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) emissions from livestock farms contribute to negative environmental impacts such as acidification and climate change. A significant part of these emissions is produced from the decomposition of slurry in livestock facilities, during storage and treatment phases. This research aimed at evaluating the effectiveness of the additive “SOP LAGOON” (made of agricultural gypsum processed with proprietary technology) on (i) NH3 and Greenhouse Gas (GHG) emissions, (ii) slurry properties and N loss. Moreover, the Life Cycle Assessment (LCA) method was applied to assess the potential environmental impact associated with stored slurry treated with the additive. Six barrels were filled with 65 L of cattle slurry, of which three were used as a control while the additive was used in the other three. The results indicated that the use of the additive led to a reduction of total nitrogen, nitrates, and GHG emissions. LCA confirmed the higher environmental sustainability of the scenario with the additive for some environmental impact categories among which climate change. In conclusion, the additive has beneficial effects on both emissions and the environment, and the nitrogen present in the treated slurry could partially displace a mineral fertilizer, which can be considered an environmental credit.


2021 ◽  
Vol 13 (9) ◽  
pp. 5322
Author(s):  
Gabriel Zsembinszki ◽  
Noelia Llantoy ◽  
Valeria Palomba ◽  
Andrea Frazzica ◽  
Mattia Dallapiccola ◽  
...  

The buildings sector is one of the least sustainable activities in the world, accounting for around 40% of the total global energy demand. With the aim to reduce the environmental impact of this sector, the use of renewable energy sources coupled with energy storage systems in buildings has been investigated in recent years. Innovative solutions for cooling, heating, and domestic hot water in buildings can contribute to the buildings’ decarbonization by achieving a reduction of building electrical consumption needed to keep comfortable conditions. However, the environmental impact of a new system is not only related to its electrical consumption from the grid, but also to the environmental load produced in the manufacturing and disposal stages of system components. This study investigates the environmental impact of an innovative system proposed for residential buildings in Mediterranean climate through a life cycle assessment. The results show that, due to the complexity of the system, the manufacturing and disposal stages have a high environmental impact, which is not compensated by the reduction of the impact during the operational stage. A parametric study was also performed to investigate the effect of the design of the storage system on the overall system impact.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3463
Author(s):  
Xueliang Yuan ◽  
Leping Chen ◽  
Xuerou Sheng ◽  
Mengyue Liu ◽  
Yue Xu ◽  
...  

Economic cost is decisive for the development of different power generation. Life cycle cost (LCC) is a useful tool in calculating the cost at all life stages of electricity generation. This study improves the levelized cost of electricity (LCOE) model as the LCC calculation methods from three aspects, including considering the quantification of external cost, expanding the compositions of internal cost, and discounting power generation. The improved LCOE model is applied to three representative kinds of power generation, namely, coal-fired, biomass, and wind power in China, in the base year 2015. The external cost is quantified based on the ReCiPe model and an economic value conversion factor system. Results show that the internal cost of coal-fired, biomass, and wind power are 0.049, 0.098, and 0.081 USD/kWh, separately. With the quantification of external cost, the LCCs of the three are 0.275, 0.249, and 0.081 USD/kWh, respectively. Sensitivity analysis is conducted on the discount rate and five cost factors, namely, the capital cost, raw material cost, operational and maintenance cost (O&M cost), other annual costs, and external costs. The results provide a quantitative reference for decision makings of electricity production and consumption.


2021 ◽  
Vol 13 (13) ◽  
pp. 7025
Author(s):  
Shiva Gorjian ◽  
Behnam Hosseingholilou ◽  
Laxmikant D. Jathar ◽  
Haniyeh Samadi ◽  
Samiran Samanta ◽  
...  

The food industry is responsible for supplying the food demand of the ever-increasing global population. The food chain is one of the major contributors to greenhouse gas (GHG) emissions, and global food waste accounts for one-third of produced food. A solution to this problem is preserving crops, vegetables, and fruits with the help of an ancient method of sun drying. For drying agricultural and marine products, several types of dryers are also being developed. However, they require a large amount of energy supplied conventionally from pollutant energy sources. The environmental concerns and depletion risks of fossil fuels persuade researchers and developers to seek alternative solutions. To perform drying applications, sustainable solar power may be effective because it is highly accessible in most regions of the world. Greenhouse dryers (GHDs) are simple facilities that can provide large capacities for drying agricultural products. This study reviews the integration of GHDs with different solar technologies, including photovoltaic (PV), photovoltaic-thermal (PVT), and solar thermal collectors. Additionally, the integration of solar-assisted greenhouse dryers (SGHDs) with heat pumps and thermal energy storage (TES) units, as well as their hybrid configuration considering integration with other renewable energy sources, is investigated to improve their thermal performance. In this regard, this review presents and discusses the most recent advances in this field. Additionally, the economic analysis of SGHDs is presented as a key factor to make these sustainable facilities commercially available.


Sign in / Sign up

Export Citation Format

Share Document