scholarly journals Thermo-Mechanical Stress Comparison of a GaN and SiC MOSFET for Photovoltaic Applications

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5900
Author(s):  
Wieland Van De Sande ◽  
Omid Alavi ◽  
Philippe Nivelle ◽  
Jan D’Haen ◽  
Michaël Daenen

Integrating photovoltaic applications within urban environments creates the need for more compact and efficient power electronics that can guarantee long lifetimes. The upcoming wide-bandgap semiconductor devices show great promise in providing the first two properties, but their packaging requires further testing in order to optimize their reliability. This paper demonstrates one iteration of the design for reliability methodology used in order to compare the generated thermo-mechanical stress in the die attach and the bond wires of a GaN and SiC MOSFET. An electro-thermal model of a photovoltaic string inverter is used in order to translate a cloudy and a clear one-hour mission profile from Arizona into a junction losses profile. Subsequently, the finite element method models of both devices are constructed through reverse engineering in order to analyze the plastic energy. The results show that the plastic energy in the die attach caused by a cloudy mission-profile is much higher than that caused by a clear mission-profile. The GaN MOSFET, in spite of its reduced losses, endures around 5 times more plastic energy dissipation density in its die attach than the SiC MOSFET while the reverse is true for the bond wires. Potential design adaptations for both devices have been suggested to initiate a new iteration in the design for reliability methodology, which will ultimately lead to a more reliable design.

2021 ◽  
Vol 2021 (HiTEC) ◽  
pp. 000089-000093
Author(s):  
Gilad Nave ◽  
Patrick McCluskey

Abstract The need for power electronic devices and materials that can operate in harsh environments, together with the Restriction of Hazardous Substances (RoHS) legislation, has driven industry and researchers to develop new attach materials. Transient Liquid Phase Sintered (TLPS) joints are strong candidates to replace the current die attach materials due to their superior mechanical, thermal, and electrical properties. Despite these qualities, current TLPS systems may exhibit stiff and brittle behavior that can lead to die or attach fracture under large thermomechanical strains during wide temperature range cycling, or under mechanical stress from shock and vibration loading, such as is experienced in automotive electronics. This paper presents an approach for reducing thermal and mechanical strain levels by incorporating Transmission Electron Microscopy (TEM) Cu grids as a reinforcement to the attach material. The grids serve as ductile reinforcement capable of absorbing elastic and plastic energy, and as a barrier for crack propagations through the relative brittle TLPS material. Homogenization calculations were used to evaluate the effective properties of the TLPS, followed by numerical analysis that shows the effect of the grids on the die attach structure, and the mechanical integrity of the design.


2012 ◽  
Vol 2012 (1) ◽  
pp. 001169-001177 ◽  
Author(s):  
Tobias Königer

Die attach materials for most MEMS packages must be highly flexible as temperature changes during the assembly process and application may lead to thermo-mechanical stress as a consequence of dissimilar coefficients of thermal expansion of substrate, chip and adhesive. Thermo-mechanical stress results in a distortion of the signal characteristics of the extremely stress-sensitive MEMS device. Within the scope of this paper, highly flexible heat-curing adhesives with a Young's modulus down to 5 MPa (0.725 ksi) at room temperature were developed. DMTA measurements show that temperature storage at +120 °C (+248 °F) does not cause the adhesive to embrittle, which would have a negative effect on the MEMS package's reliability. After storage at +120 °C (+248 °F) for up to 1000 h, no increase in Young's modulus can be observed. The adhesives cure at extremely low temperatures down to +100 °C (+212 °F), which reduces stress development during the assembly process. In addition, the adhesives have very process-friendly properties. Processing times of more than one week can be achieved. The option of dual curing enables preliminary light fixation of the chip within just seconds.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2865 ◽  
Author(s):  
Wieland Van De Sande ◽  
Simon Ravyts ◽  
Omid Alavi ◽  
Philippe Nivelle ◽  
Johan Driesen ◽  
...  

The operational expenditures of solar energy are gaining attention because of the continuous decrease of the capital expenditures. This creates a demand for more reliable systems to further decrease the costs. Increased reliability is often ensured by iterative use of design for reliability. The number of iterations that can take place strongly depends on the computational efficiency of this methodology. The main research objective is to quantify the influence of the temperature dependence of the electrical variables used in the electro-thermal model on the reliability and the computation time. The influence on the reliability is evaluated by using a 2-D finite elements method model of the MOSFET and calculating the plastic energy dissipation density in the die-attach and the bond wire. The trade-off between computation time of the electro-thermal model in PLECS (4.3, Plexim, Zurich, Switzerland) and generated plastic energy accuracy obtained in COMSOL (5.3, COMSOL Inc., Burlington, MA, USA) is reported when excluding a certain temperature dependence. The results indicate that the temperature dependence of the input and output capacitors causes no change in the plastic energy dissipated in the MOSFET but does introduce the largest increase in computation time. However, not including the temperature dependence of the MOSFET itself generates the largest difference in plastic energy of 10% as the losses in the die are underestimated.


2016 ◽  
Vol 64 ◽  
pp. 419-424 ◽  
Author(s):  
A.S. Bahman ◽  
F. Iannuzzo ◽  
F. Blaabjerg

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1915
Author(s):  
Hossein Khoun Jahan ◽  
Reyhaneh Eskandari ◽  
Tohid Rahimi ◽  
Rasoul Shalchi Alishah ◽  
Lei Ding ◽  
...  

In this paper, a switched-capacitor multilevel inverter with voltage boosting and common-mode-voltage reduction capabilities is put forth. The proposed inverter is synthesized with one-half bridge and several switched-capacitor cells. Due to the voltage boosting and common-mode current reduction features, the proposed multilevel inverter is suitable for grid-connected PV applications. In addition, an analytical lifetime evaluation based on mission profile of the proposed inverter has been presented to derive lifetime distribution of semiconductors. Whereas in the proposed inverter, any components failure can bring the whole system to a shutdown. The series reliability model is used to estimate the lifetime of the overall system. The performance of the suggested multilevel inverter in grid-connected applications is verified through the simulation results using the grid-tied model in Matlab/Simulink. Moreover, the viability and feasibility of the presented inverter are proven by using a one kW lab-scaled prototype.


2021 ◽  
Vol 121 ◽  
pp. 114132
Author(s):  
Tomoyuki Uchida ◽  
Takumi Masuyama ◽  
Ryuichi Sugie ◽  
Satoshi Watanabe

2012 ◽  
Vol 2012 (CICMT) ◽  
pp. 000030-000034
Author(s):  
Conor Slater ◽  
Fabrizio Vecchio ◽  
Thomas Maeder ◽  
Peter Ryser

The continuing trend in the automotive and aviation industries to reduce complexity of electronic systems by removing cooling results in a need for high temperature electronics and associated packaging technologies. To ensure reliability over long periods of time the degradation of the packaging materials should be characterised. Epoxies show great promise as a reliable die attach solution for high temperature electronics due to their high bond strength, resistance to fatigue and chemical stability at temperatures up to 250°C. This work presents a method and test vehicle for measuring the thermal conductivity of an epoxy die attach. The test vehicle is constructed by using the epoxy under test to bond a die with an integrated PTC heater to an alumina substrate. To measure the thermal conductivity the heater heats the die for a few seconds after which the die allowed to cool down to the temperature of the substrate. The temperature of the cooling die is monitored and the time constant of the temperature decay is used to calculate the thermal conductivity of the die attach. Previous work demonstrated that this method can provide realistic information on the state of the die attach by relating the measured thermal conductivity to the shear strength of the die. Additionally the method is non destructive and can be used to monitor the degradation of the attach, such as fatigue cracking during thermal cycling. Here the test vehicle is modeled using the finite element method to get a better understanding of what temperatures the die attach is subjected to and to improve the thermal conductivity measurement.


2013 ◽  
Vol 28 (6) ◽  
pp. 2998-3007 ◽  
Author(s):  
S. E. De León-Aldaco ◽  
H. Calleja ◽  
F. Chan ◽  
H. R. Jiménez-Grajales

2005 ◽  
Vol 864 ◽  
Author(s):  
David B. Jackrel ◽  
Homan B. Yuen ◽  
Seth R. Bank ◽  
Mark A. Wisteyy ◽  
Xiaojun Yu ◽  
...  

AbstractThe dilute-nitride GaInNAs shows great promise in becoming the next choice for 1 eV photodetector and multi-junction photovoltaic applications due to the ability for it to be grown lattice-matched on GaAs substrates. This paper will present results from high-power photodetector devices fabricated from high-quality thick GaInNAs and metamorphic InGaAs materials grown by MBE. The internal quantum efficiency of rear-illuminated PIN photodiodes with thick GaInNAs films as the intrinsic region (roughly 62% at 1064 nm) is somewhat lower than comparable metamorphic InGaAs devices (roughly 75% at 1064 nm). However, the dark current density of the GaInNAs devices is also somewhat lower (roughly 3 μA/cm2 at 2×104 V/cm bias) than the InGaAs devices (roughly 20 μA/cm2 at 2×104 V/cm bias), while the breakdown voltages (beyond -20 V) are comparable. Materials characterization of each structure, including x-ray diffraction and room-temperature as well as temperature-dependent photoluminescence studies will be presented in order to explain the characteristics observed in the devices composed of the two different material systems.


Author(s):  
Andreas Vlahinos ◽  
Michael O’Keefe

This paper demonstrates a methodology for taking variation into account in the thermal and fatigue analyses of the die attach for an inverter of an electric traction drive vehicle. This method can be used to understand how variation and mission profile affect parameters of interest in a design. Three parameters are varied to represent manufacturing, material, and loading variation: solder joint voiding, aluminum nitride substrate thermal conductivity, and heat generation at the integrated gate bipolar transistor, or IGBT. The influence of these parameters on temperature and solder fatigue life is presented. The heat generation loading variation shows the largest influence on the results for the assumptions used in this problem setup.


Sign in / Sign up

Export Citation Format

Share Document