scholarly journals Polymers for EOR Application in High Temperature and High Viscosity Oils: Rock–Fluid Behavior

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5944
Author(s):  
Rubén H. Castro ◽  
Sebastián Llanos ◽  
Jenny Rodríguez ◽  
Henderson I. Quintero ◽  
Eduardo Manrique

Viscosity losses and high degradation factors have a drastic impact over hydrolyzed polyacrylamides (HPAM) currently injected, impacting the oil recovery negatively. Previous studies have demonstrated that biopolymers are promising candidates in EOR applications due to high thermochemical stability in harsh environments. However, the dynamic behavior of a biopolymer as scleroglucan through sandstone under specific conditions for a heavy oil field with low salinity and high temperature has not yet been reported. This work presents the rock–fluid evaluation of the scleroglucan (SG at 935 mgL−1) and sulfonated polyacrylamide (ATBS at 2500 mgL−1) to enhance oil recovery in high-temperature for heavy oils (212 °F and total dissolved solid of 3800 mgL−1) in synthetic (0.5 Darcy) and representative rock samples (from 2 to 5 Darcy) for a study case of a Colombian heavy oilfield. Dynamic evaluation at reservoir conditions presents a scenario with stable injectivity after 53.6 PV with a minimal pressure differential (less than 20 psi), inaccessible porous volume (IPV) of 18%, dynamic adsorption of 49 µg/g, and resistance and residual resistance factors of 6.17 and 2.84, respectively. In addition, higher oil displacement efficiency (up to 10%) was obtained with lower concentration (2.7 times) compared to a sulfonated polyacrylamide polymer.

2017 ◽  
Vol 4 (3) ◽  
pp. 207 ◽  
Author(s):  
L.I. Svarovskaya ◽  
L.K. Altunina

<p>A combined physico-chemical and microbiological method has been developed to enhance oil recovery. The method has been developed taking into account both oil properties and microbiological characteristics of the formation waters in White Tiger oil field. Total number of microflora in the formation water exceeded 2·10<sup>7</sup> cell/cm<sup>3</sup>. The solution of IKhN-KA system applied as a stimulating substrate increased the number of microflora by 5-6 orders. Due to active enzyme system microorganisms were capable to affect oil fixed on the porous rock. The contact of microorganisms with oil was accompanied with hydrocarbon destruction and with the accumulation of metabolism products. As a result rheological properties of oil were changed. During 10 days of microflora cultivation in contact with oil total biodestruction of n-alkanes in oil recovered from White Tiger oil field ranged from 76 to 81%. Filtration properties and oil-displacing capacity were studied using core reservoir models at 120 °C and at a pressure of 4 MPa under the conditions simulating those observed in White Tiger oil field. Porous volume of the model was 108.2 cm<sup>3</sup>, gas permeability averaged 0.712 D, core length - 26 cm. Oil displacement efficiency amounted to 57.4%. Using a combined physico-chemical and microbiological method one increased oil displacement efficiency by 14.2%.</p>


2021 ◽  
Vol 3 (3) ◽  
pp. 61-74
Author(s):  
F. E. Safarov ◽  
S. Yu. Lobanova ◽  
B. Ye. Yelubaev ◽  
N. E. Talamanov ◽  
Sun Zhijian ◽  
...  

The presented work discusses increasing oil recovery factor using physicochemical EOR methods. This article presents the field pilot tests results related to cyclical gel polymer flooding technology as applied under the conditions productive reservoirs rich in high-viscosity oils (viscosity in reservoir conditions above 300 mPa s) of the Buzachi North oil field, extending the boundaries of application of these methods. The work used the methods of hydrodynamic modeling, mathematical analysis; the necessary parameters of fractures and super reservoirs for calculating the working volumes of the injected compositions were estimated using tracer studies.


2020 ◽  
Author(s):  
Sudad H Al-Obaidi ◽  
Smirnov VI ◽  
Kamensky IP

High viscosity of heavy oils at reservoir conditions is one of the main causes of the low production rates of producing wells, and sometimes even their complete absence when trying to develop a field on a natural mode. The rheological properties of heavy oil deposits in a wide temperature range were studied in this work. Special attention was paid to the study of viscous and elastic components of oil viscosity as a function of temperature to justify the optimal conditions for the development of heavy oil fields. Heavy oil samples collected from Pechersky oil field (Russia) were used in this research. Dynamic viscosity tests were carried out on the heavy oil of this field. It was noticed that high values of viscous and elastic components of oil viscosity were observed over the entire temperature range. It has also been remarked that the values of oil viscosity components are inversely proportional to the temperature increase.


2015 ◽  
Vol 733 ◽  
pp. 43-46
Author(s):  
Jiang Min Zhao ◽  
Tian Ge Li

In this paper, several aspects of the improvement of the oil recovery were analyzed theoretically based on the mechanism that equi-fluidity enhances the pressure gradient. These aspects include the increase of the flow rate and the recovery rate, of the swept volume, and of the oil displacement efficiency. Also, based on the actual situation, the author designed the oil displacement method with gathered energy equi-fluidity, realizing the expectation of enhancing oil recovery with multi-slug and equi-fluidity oil displacement method.


SPE Journal ◽  
2021 ◽  
pp. 1-20
Author(s):  
Yaoze Cheng ◽  
Yin Zhang ◽  
Abhijit Dandekar ◽  
Jiawei Li

Summary Shallow reservoirs on the Alaska North Slope (ANS), such as Ugnu and West Sak-Schrader Bluff, hold approximately 12 to 17 × 109 barrels of viscous oil. Because of the proximity of these reservoirs to the permafrost, feasible nonthermal enhanced oil recovery (EOR) methods are highly needed to exploit these oil resources. This study proposes three hybrid nonthermal EOR techniques, including high-salinity water (HSW) injection sequentially followed by low-salinity water (LSW) and low-salinity polymer (LSP) flooding (HSW-LSW-LSP), solvent-alternating-LSW flooding, and solvent-alternating-LSP flooding, to recover ANS viscous oils. The oil recovery performance of these hybrid EOR techniques has been evaluated by conducting coreflooding experiments. Additionally, constant composition expansion (CCE) tests, ζ potential determinations, and interfacial tension (IFT) measurements have been conducted to reveal the EOR mechanisms of the three proposed hybrid EOR techniques. Coreflooding experiments and IFT measurements have been conducted at reservoir conditions of 1,500 psi and 85°F, while CCE tests have been carried out at a reservoir temperature of 85°F. ζ potential determinations have been conducted at 14.7 psi and 77°F. The coreflooding experiment results have demonstrated that all of the three proposed hybrid EOR techniques could result in much better performance in reducing residual oil saturation than waterflooding and continuous solvent flooding in viscous oil reservoirs on ANS, implying better oil recovery potential. In particular, severe formation damage or blockage at the production end occurred when natural sand was used to prepare the sandpack column, indicating that the natural sand may have introduced some unknown constituents that may react with the injected solvent and polymer, resulting in a severe blocking issue. Our investigation on this is ongoing, and more detailed studies are being conducted in our laboratory. The CCE test results demonstrate that more solvent could be dissolved into the tested viscous oil with increasing pressure, simultaneously resulting in more oil swelling and viscosity reduction. At the desired reservoir conditions of 1,500 psi and 85°F, as much as 60 mol% of solvent could be dissolved into the ANS viscous oil, resulting in more than 31% oil swelling and 97% oil viscosity reduction. Thus, the obvious oil swelling and significant viscosity reduction resulting from solvent injection could lead to much better microscopic displacement efficiency during the solvent flooding. The ζ potential determination results illustrate that LSW resulted in more negative ζ potential than HSW on the interface between sand and water, indicating that lowering the salinity of injected brine could result in the sand surface being more water-wet, but adding polymer to the LSW could not further enhance the water wetness. The IFT measurement results show that the IFT between the tested ANS viscous oil and LSW is higher than that between the tested viscous oil and HSW, which conflicts with the commonly recognized IFT reduction effect by LSW flooding. Thus, the EOR theory of the LSW flooding in our proposed hybrid techniques may be attributed to low-salinity effects (LSEs) such as multi-ion exchange, expansion of electrical double layer, and salting-in effect, while water wetness enhancement may benefit the LSW flooding process to some extent. The LSP’s viscosity is much higher than the viscosities of LSW and solvent, so LSP injection could result in better mobility control in the tested viscous oil reservoirs, leading to improvement of macroscopic sweep efficiency. Combining these EOR theories, the proposed hybrid EOR techniques have the potential to significantly increase oil recovery in viscous oil reservoirs on ANS by maximizing the overall displacement efficiency.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Peike Gao ◽  
Hongbo Wang ◽  
Guanxi Li ◽  
Ting Ma

With the development of molecular ecology, increasing low-abundance microbial populations were detected in oil reservoirs. However, our knowledge about the oil recovery potential of these populations is lacking. In this study, the oil recovery potential of low-abundance Dietzia that accounts for less than 0.5% in microbial communities of a water-flooding oil reservoir was investigated. On the one hand, Dietzia sp. strain ZQ-4 was isolated from the water-flooding reservoir, and the oil recovery potential was evaluated from the perspective of metabolisms and oil-displacing test. On the other hand, the strain has alkane hydroxylase genes alkB and P450 CYP153 and can degrade hydrocarbons and produce surfactants. The core-flooding test indicated that displacing fluid with 2% ZQ-4 fermentation broth increased 18.82% oil displacement efficiency, and in situ fermentation of ZQ-4 increased 1.97% oil displacement efficiency. Furthermore, the responses of Dietzia in the reservoir accompanied by the nutrient stimulation process was investigated and showed that Dietzia in some oil production wells significantly increased in the initial phase of nutrient injection and sharply decreased along with the continuous nutrient injection. Overall, this study indicates that Dietzia sp. strain has application potential for enhancing oil recovery through an ex situ way, yet the ability of oil recovery in situ based on nutrient injection is limited.


2012 ◽  
Vol 268-270 ◽  
pp. 547-550
Author(s):  
Qing Wang Liu ◽  
Xin Wang ◽  
Zhen Zhong Fan ◽  
Jiao Wang ◽  
Rui Gao ◽  
...  

Liaohe oil field block 58 for Huancai, the efficiency of production of thickened oil is low, and the efficiency of displacement is worse, likely to cause other issues. Researching and developing an type of Heavy Oil Viscosity Reducer for exploiting. The high viscosity of W/O emulsion changed into low viscosity O/W emulsion to facilitate recovery, enhanced oil recovery. Through the experiment determine the viscosity properties of Heavy Oil Viscosity Reducer. The oil/water interfacial tension is lower than 0.0031mN•m-1, salt-resisting is good. The efficiency of viscosity reduction is higher than 90%, and also good at 180°C.


2014 ◽  
Vol 535 ◽  
pp. 701-704 ◽  
Author(s):  
Peng Lv ◽  
Ming Yuan Li ◽  
Mei Qin Lin

Producing ultra-low interfacial tensions and maintaining high viscosity is the most important mechanism relating to SP flooding for enhanced oil recovery. The interfacial tension between surfactant (PJZ-2 and BE)/polymer solution and Zahra oil was evaluated in the work. Based on the evaluatiojn of interfacial tension, the polymer FP6040s/surfactant BE system was selected as the SP flooding system for Zahra oil field.


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 908 ◽  
Author(s):  
Muhammad Shahzad Kamal ◽  
Syed Muhammad Shakil Hussain ◽  
Lionel Talley Fogang

Long-term thermal stability of surfactants under harsh reservoir conditions is one of the main challenges for surfactant injection. Most of the commercially available surfactants thermally degrade or precipitate when exposed to high-temperature and high-salinity conditions. In this work, we designed and synthesized three novel betaine-based polyoxyethylene zwitterionic surfactants containing different head groups (carboxybetaine, sulfobetaine, and hydroxysulfobetaine) and bearing an unsaturated tail. The impact of the surfactant head group on the long-term thermal stability, foam stability, and surfactant–polymer interactions were examined. The thermal stability of the surfactants was assessed by monitoring the structural changes when exposed at high temperature (90 °C) for three months using 1H-NMR, 13C-NMR, and FTIR analysis. All surfactants were found thermally stable regardless of the headgroup and no structural changes were evidenced. The surfactant–polymer interactions were dominant in deionized water. However, in seawater, the surfactant addition had no effect on the rheological properties. Similarly, changing the headgroup of polyoxyethylene zwitterionic surfactants had no major effect on the foamability and foam stability. The findings of the present study reveal that the betaine-based polyoxyethylene zwitterionic surfactant can be a good choice for enhanced oil recovery application and the nature of the headgroup has no major impact on the thermal, rheological, and foaming properties of the surfactant in typical harsh reservoir conditions (high salinity, high temperature).


Sign in / Sign up

Export Citation Format

Share Document