scholarly journals Omnidirectional WPT and Data Communication for Electric Air Vehicles: Feasibility Study

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6480
Author(s):  
Safa Zouaoui ◽  
Wael Dghais ◽  
Rui Melicio ◽  
Hamdi Belgacem

This paper investigates the feasibility of using the three-dimensional omnidirectional inductive channel for power transfer and as a power line communication (PLC) for ground-based vehicle, electric air vehicle, or space applications. The simulation results were performed by the advanced design system software using lumped equivalent circuit model. The power transfer efficiency was determined based on multiport scattering (S)-parameters numerical simulation results while the theoretical channel capacity was calculated based on Matlab software as a function of the coupling coefficient considering an additive white Gaussian noise. Furthermore, the magnetic field distribution was evaluated as function of the misalignment angle θ between the receiver and the three orthogonal transmitters coils.

2015 ◽  
Vol 738-739 ◽  
pp. 103-106
Author(s):  
Yong Fang ◽  
Bao Qing Zeng ◽  
Wen Tao Zhang ◽  
Pu Wang

This paper presents millimeter wave characterization and models of various wire bond transitions between chip’s ground-signal-ground pad (GSG) and microstrip (MS), include single-wire-nomatch MS-GSG transition, double-wire-nomatch MS-GSG, single-wire-match MS-GSG transition, and double-wire-match MS-GSG transition. It also presents the 3D full-wave electromagnetic simulation. Analysis results show that the double-wire-match MS-GSG transition’s characteristic is better than other three transitions in the whole W band. The accurate extracted parameter values are used for the lumped equivalent circuit model, whose simulation results are good with the full wave simulation results. The error between lumped equivalent circuit and full-wave models is of the order of ±0.2dB for S11 and S21 in the frequency range 75 - 105GHz. The proposed lumped equivalent circuit is suitable to be implemented in commercial microwave CAD tools for the electromagnetic sensor designing.


2020 ◽  
Vol 20 (4) ◽  
pp. 270-276
Author(s):  
Nam Ha-Van ◽  
Hoang Le-Huu ◽  
Minh Thuy Le ◽  
Kwangsuk Park ◽  
Chulhun Seo

The free-positioning wireless power transfer (WPT) system has drawn attention in recent years. Traditionally, a WPT system can transfer energy in one or two directions on the same plane, but it leads the restrictions of angle and axis misalignment between a transmitter and a receiver coil. In this paper, we propose a free-positioning WPT system using a three-dimensional cubic-shaped transmitting coil for portable device charging. A small receiving coil is placed inside the transmitter to achieve the transferred energy through the magnetic resonant coupling. In addition, the equivalent circuit and the mutual inductance between the Tx and Rx coils are analyzed. Finally, a practical experiment is implemented to verify the transfer performance, which can reach up to about 50% power transfer efficiency. The proposed system can charge in spatial freedom.


Author(s):  
Masood Rehman ◽  
Zuhairi Baharudin ◽  
Perumal Nallagownden ◽  
Badar Ul Islam

<p>Wireless power transfer (WPT) system has got significant attention in recent years due to its applications in consumer electronics, medical implants and electric vehicles etc. WPT is a promising choice in situations, where the physical connectors can be unreliable and susceptible to failure. The efficiency of WPT system decreasing rapidly with increasing air-gap. Many circuit topologies have been employed to enhance the efficiency of the WPT system. This paper presents the modelling and performance analysis of resonant wireless power transfer (RWPT) system using series-parallel-mixed topology. The power transfer efficiency analysis of the model is investigated via circuit theory. S-parameters have been used for measuring power transfer efficiency. Transient analysis is performed to realize the behavior of voltage and current waveforms using advanced design system (ADS) software. The proposed model is tested with two amplitudes i.e. 100 V peak-to-peak and 110 V peak-to-peak at the same frequency of 365.1 kHz. The overall result shows that the series-parallel-mixed topology model has higher efficiency at low coupling factor (K) for both voltage amplitudes.</p>


Author(s):  
Tuan Anh Vu ◽  
Chi Van Pham ◽  
William Tran ◽  
Anh-Vu Pham ◽  
Christopher S. Gardner

This paper presents the design and development of an integrated wireless power transfer and data communication system. The power and data transfer share a common inductive link that consists of two identical Helical coils placed on both sides of a carbon composite barrier. Power and data are transferred simultaneously through a 5-mm thick carbon composite barrier without any physical penetration or contact. Power transfer measurements show that the system can deliver 9.7 AC power to the receiving coil with a power transfer efficiency of 36% through the carbon composite barrier. The system achieves a bidirectional half-duplex data communication with the data rate of unit 1.2kbit/s.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1216
Author(s):  
Xuemei Zheng ◽  
Tao Jiang ◽  
Hao Lu ◽  
Yanyan Wang

The electromagnetic band gap structure (EBGs) is widely used in microwave engineering, such as amplifiers, waveguides, microstrip filters, due to the fact of its excellent band stop characteristics. In this paper, three kinds of microstrip band stop filters were proposed which were etched with a hexagonal ring EBGs, octagonal ring EBGs and elliptical ring EBGs. Firstly, the etching coefficient of a band stop filter is proposed, and the performance of filters with different etching coefficient was analyzed. Secondly, the equivalent circuit of an EBGs band stop filter is proposed. By comparing the simulation results using advanced design system (ADS) and high frequency structure simulator (HFSS), it was found that the simulation results had the same −10 dB stopband width which verifies the correctness of the equivalent circuit model. Finally, three kinds of microstrip stopband filters were fabricated and measured. The experimental results of the −10 dB stopband width and resonant frequency were in good agreement with the simulation results. The −10 dB stopband fractional bandwidth of the three kinds of microstrip stopband filters was more than 63%. The proposed microstrip band stop filters can be widely used in microwave devices with a wide stopband.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1417
Author(s):  
Jung-Hoon Cho ◽  
Byoung-Hee Lee ◽  
Young-Joon Kim

Electronic devices usually operate in a variable loading condition and the power transfer efficiency of the accompanying wireless power transfer (WPT) method should be optimizable to a variable load. In this paper, a reconfigurable WPT technique is introduced to maximize power transfer efficiency in a weakly coupled, variable load wireless power transfer application. A series-series two-coil wireless power network with resonators at a frequency of 150 kHz is presented and, under a variable loading condition, a shunt capacitor element is added to compensate for a maximum efficiency state. The series capacitance element of the secondary resonator is tuned to form a resonance at 150 kHz for maximum power transfer. All the capacitive elements for the secondary resonators are equipped with reconfigurability. Regardless of the load resistance, this proposed approach is able to achieve maximum efficiency with constant power delivery and the power present at the load is only dependent on the input voltage at a fixed operating frequency. A comprehensive circuit model, calculation and experiment is presented to show that optimized power transfer efficiency can be met. A 50 W WPT demonstration is established to verify the effectiveness of this proposed approach.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazunori Takahashi

AbstractDevelopment of a magnetic nozzle radiofrequency (rf) plasma thruster has been one of challenging topics in space electric propulsion technologies. The thruster typically consists of an rf plasma source and a magnetic nozzle, where the plasma produced inside the source is transported along the magnetic field and expands in the magnetic nozzle. An imparted thrust is significantly affected by the rf power coupling for the plasma production, the plasma transport, the plasma loss to the wall, and the plasma acceleration process in the magnetic nozzle. The rf power transfer efficiency and the imparted thrust are assessed for two types of rf antennas exciting azimuthal mode number of $$m=+1$$ m = + 1 and $$m=0$$ m = 0 , where propellant argon gas is introduced from the upstream of the thruster source tube. The rf power transfer efficiency and the density measured at the radial center for the $$m=+1$$ m = + 1 mode antenna are higher than those for the $$m=0$$ m = 0 mode antenna, while a larger thrust is obtained for the $$m=0$$ m = 0 mode antenna. Two-dimensional plume characterization suggests that the lowered performance for the $$m=+1$$ m = + 1 mode case is due to the plasma production at the radial center, where contribution on a thrust exerted to the magnetic nozzle is weak due to the absence of the radial magnetic field. Subsequently, the configuration is modified so as to introduce the propellant gas near the thruster exit for the $$m=0$$ m = 0 mode configuration and the thruster efficiency approaching twenty percent is successfully obtained, being highest to date in the kW-class magnetic nozzle rf plasma thrusters.


Author(s):  
Chenqi Zhu

In order to improve the guiding accuracy in intercepting the hypersonic vehicle, this article presents a finite-time guidance law based on the observer and head-pursuit theory. First, based on a two-dimensional model between the interceptor and target, this study applies the fast power reaching law to head-pursuit guidance law so that it can alleviate the chattering phenomenon and ensure the convergence speed. Second, target maneuvers are considered as system disturbances, and the head-pursuit guidance law based on an observer is proposed. Furthermore, this method is extended to a three-dimensional case. Finally, comparative simulation results further verify the superiority of the guidance laws designed in this article.


Sign in / Sign up

Export Citation Format

Share Document