scholarly journals Numerical Study of Spray-Induced Turbulence Using Industrial Fire-Mitigation Nozzles

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1135
Author(s):  
Guodong Gai ◽  
Abdellah Hadjadj ◽  
Sergey Kudriakov ◽  
Stephane Mimouni ◽  
Olivier Thomine

A numerical investigation of the spray-induced turbulence generated from industrial spray nozzles is carried out to better understand the roles of the nozzle spray on the fires or explosions in different accidental scenarios. Numerical simulations are first validated against experimental data in the single nozzle case using the monodisperse and polydisperse assumption for droplet diameters. The polydispersion of the nozzle spray is proven to be necessary to correctly predict the gas and droplet velocities. The turbulent kinetic energy has dominant values inside the spray cone, decreases rapidly with the vertical distance from the spray nozzle, and is strongly affected by the spray droplet diameter. On the contrary, the integral length scale is found to have high values outside the spray cone. Two interacting sprays injected from different nozzles are then investigated numerically using the validated polydisperse model. The water sprays generated from such industrial nozzles can generate turbulence of high intensity in the near-nozzle region, and this intensity decreases with the distance from the nozzles. A better understanding of the turbulence generated by the spray system can be beneficial for the evaluation of several important phenomena such as explosion enhancement. The guideline values obtained from this investigation of single and double nozzles can be useful for large-scale numerical simulations.

2018 ◽  
Vol 55 (4) ◽  
pp. 652-657 ◽  
Author(s):  
Gabriel Murariu ◽  
Razvan Adrian Mahu ◽  
Adrian Gabriel Murariu ◽  
Mihai Daniel Dragu ◽  
Lucian P. Georgescu ◽  
...  

This article presents the design of a specific unmanned aerial vehicle UAV prototype own building. Our UAV is a flying wing type and is able to take off with a little boost. This system happily combines some major advantages taken from planes namely the ability to fly horizontal, at a constant altitude and of course, the great advantage of a long flight-time. The aerodynamic models presented in this paper are optimized to improve the operational performance of this aerial vehicle, especially in terms of stability and the possibility of a long gliding flight-time. Both aspects are very important for the increasing of the goals� efficiency and for the getting work jobs. The presented simulations were obtained using ANSYS 13 installed on our university� cluster system. In a next step the numerical results will be compared with those during experimental flights. This paper presents the main results obtained from numerical simulations and the obtained magnitudes of the main flight coefficients.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 248
Author(s):  
Sencer Yücesan ◽  
Daniel Wildt ◽  
Philipp Gmeiner ◽  
Johannes Schobesberger ◽  
Christoph Hauer ◽  
...  

A systematic variation of the exposure level of a spherical particle in an array of multiple spheres in a high Reynolds number turbulent open-channel flow regime was investigated while using the Large Eddy Simulation method. Our numerical study analysed hydrodynamic conditions of a sediment particle based on three different channel configurations, from full exposure to zero exposure level. Premultiplied spectrum analysis revealed that the effect of very-large-scale motion of coherent structures on the lift force on a fully exposed particle resulted in a bi-modal distribution with a weak low wave number and a local maximum of a high wave number. Lower exposure levels were found to exhibit a uni-modal distribution.


A numerical study on the transition from laminar to turbulent of two-dimensional fuel jet flames developed in a co-flowing air stream was made by adopting the flame surface model of infinite chemical reaction rate and unit Lewis number. The time dependent compressible Navier–Stokes equation was solved numerically with the equation for coupling function by using a finite difference method. The temperature-dependence of viscosity and diffusion coefficient were taken into account so as to study effects of increases of these coefficients on the transition. The numerical calculation was done for the case when methane is injected into a co-flowing air stream with variable injection Reynolds number up to 2500. When the Reynolds number was smaller than 1000 the flame, as well as the flow, remained laminar in the calculated domain. As the Reynolds number was increased above this value, a transition point appeared along the flame, downstream of which the flame and flow began to fluctuate. Two kinds of fluctuations were observed, a small scale fluctuation near the jet axis and a large scale fluctuation outside the flame surface, both of the same origin, due to the Kelvin–Helmholtz instability. The radial distributions of density and transport coefficients were found to play dominant roles in this instability, and hence in the transition mechanism. The decreased density in the flame accelerated the instability, while the increase in viscosity had a stabilizing effect. However, the most important effect was the increase in diffusion coefficient. The increase shifted the flame surface, where the large density decrease occurs, outside the shear layer of the jet and produced a thick viscous layer surrounding the jet which effectively suppressed the instability.


2017 ◽  
Vol 118 ◽  
pp. 188-198 ◽  
Author(s):  
Yongsheng Tian ◽  
Keyuan Zhang ◽  
Naihua Wang ◽  
Zheng Cui ◽  
Lin Cheng

Author(s):  
Yoann Jus ◽  
Elisabeth Longatte ◽  
Jean-Camille Chassaing ◽  
Pierre Sagaut

The present work focusses on the numerical study of Vortex-Induced Vibrations (VIV) of an elastically mounted cylinder in a cross flow at moderate Reynolds numbers. Low mass-damping experimental studies show that the dynamic behavior of the cylinder exhibits a three-branch response model, depending on the range of the reduced velocity. However, few numerical simulations deal with accurate computations of the VIV amplitudes at the lock-in upper branch of the bifurcation diagram. In this work, the dynamic response of the cylinder is investigated by means of three-dimensional Large Eddy Simulation (LES). An Arbitrary Lagrangian Eulerian framework is employed to account for fluid solid interface boundary motion and grid deformation. Numerous numerical simulations are performed at a Reynolds number of 3900 for both no damping and low-mass damping ratio and various reduced velocities. A detailed physical analysis is conducted to show how the present methodology is able to capture the different VIV responses.


Author(s):  
M. V. Pham ◽  
F. Plourde ◽  
S. K. Doan

Heat transfer enhancement is a subject of major concern in numerous fields of industry and research. Having received undivided attention over the years, it is still studied worldwide. Given the exponential growth of computing power, large-scale numerical simulations are growing steadily more realistic, and it is now possible to obtain accurate time-dependent solutions with far fewer preliminary assumptions about the problems. As a result, an increasingly wide range of physics is now open for exploration. More specifically, it is time to take full advantage of large eddy simulation technique so as to describe heat transfer in staggered parallel-plate flows. In fact, from simple theory through experimental results, it has been demonstrated that surface interruption enhances heat transfer. Staggered parallel-plate geometries are of great potential interest, and yet many numerical works dedicated to them have been tarnished by excessively simple assumptions. That is to say, numerical simulations have generally hypothesized lengthwise periodicity, even though flows are not periodic; moreover, the LES technique has not been employed with sufficient frequency. Actually, our primary objective is to analyze turbulent influence with regard to heat transfers in staggered parallel-plate fin geometries. In order to do so, we have developed a LES code, and numerical results are compared with regard to several grid mesh resolutions. We have focused mainly upon identification of turbulent structures and their role in heat transfer enhancement. Another key point involves the distinct roles of boundary restart and the vortex shedding mechanism on heat transfer and friction factor.


2010 ◽  
Vol 662 ◽  
pp. 409-446 ◽  
Author(s):  
G. SILANO ◽  
K. R. SREENIVASAN ◽  
R. VERZICCO

We summarize the results of an extensive campaign of direct numerical simulations of Rayleigh–Bénard convection at moderate and high Prandtl numbers (10−1 ≤ Pr ≤ 104) and moderate Rayleigh numbers (105 ≤ Ra ≤ 109). The computational domain is a cylindrical cell of aspect ratio Γ = 1/2, with the no-slip condition imposed on all boundaries. By scaling the numerical results, we find that the free-fall velocity should be multiplied by $1/\sqrt{{\it Pr}}$ in order to obtain a more appropriate representation of the large-scale velocity at high Pr. We investigate the Nusselt and the Reynolds number dependences on Ra and Pr, comparing the outcome with previous numerical and experimental results. Depending on Pr, we obtain different power laws of the Nusselt number with respect to Ra, ranging from Ra2/7 for Pr = 1 up to Ra0.31 for Pr = 103. The Nusselt number is independent of Pr. The Reynolds number scales as ${\it Re}\,{\sim}\,\sqrt{{\it Ra}}/{\it Pr}$, neglecting logarithmic corrections. We analyse the global and local features of viscous and thermal boundary layers and their scaling behaviours with respect to Ra and Pr, and with respect to the Reynolds and Péclet numbers. We find that the flow approaches a saturation state when Reynolds number decreases below the critical value, Res ≃ 40. The thermal-boundary-layer thickness increases slightly (instead of decreasing) when the Péclet number increases, because of the moderating influence of the viscous boundary layer. The simulated ranges of Ra and Pr contain steady, periodic and turbulent solutions. A rough estimate of the transition from the steady to the unsteady state is obtained by monitoring the time evolution of the system until it reaches stationary solutions. We find multiple solutions as long-term phenomena at Ra = 108 and Pr = 103, which, however, do not result in significantly different Nusselt numbers. One of these multiple solutions, even if stable over a long time interval, shows a break in the mid-plane symmetry of the temperature profile. We analyse the flow structures through the transitional phases by direct visualizations of the temperature and velocity fields. A wide variety of large-scale circulation and plume structures has been found. The single-roll circulation is characteristic only of the steady and periodic solutions. For other regimes at lower Pr, the mean flow generally consists of two opposite toroidal structures; at higher Pr, the flow is organized in the form of multi-jet structures, extending mostly in the vertical direction. At high Pr, plumes mainly detach from sheet-like structures. The signatures of different large-scale structures are generally well reflected in the data trends with respect to Ra, less in those with respect to Pr.


Author(s):  
Yuhang Zhang ◽  
Jiejie Li ◽  
Hongjian Zhou ◽  
Yiqun Hu ◽  
Suhang Ding ◽  
...  

Author(s):  
Elizaveta Ivanova ◽  
Berthold Noll ◽  
Peter Griebel ◽  
Manfred Aigner ◽  
Khawar Syed

Turbulent mixing and autoignition of H2-rich fuels at relevant reheat combustor operating conditions are investigated in the present numerical study. The flow configuration under consideration is a fuel jet perpendicularly injected into a crossflow of hot flue gas (T > 1000K, p = 15bar). Based on the results of the experimental study for the same flow configuration and operating conditions two different fuel blends are chosen for the numerical simulations. The first fuel blend is a H2/natural gas/N2 mixture at which no autoignition events were observed in the experiments. The second fuel blend is a H2/N2 mixture at which autoignition in the mixing section occurred. First, the non-reacting flow simulations are performed for the H2/natural gas/N2 mixture in order to compare the accuracy of different turbulence modeling methods. Here the steady-state Reynolds-averaged Navier-Stokes (RANS) as well as the unsteady scale-adaptive simulation (SAS) turbulence modeling methods are applied. The velocity fields obtained in both simulations are directly validated against experimental data. The SAS method shows better agreement with the experimental results. In the second part of the present work the autoignition of the H2/N2 mixture is numerically studied using the 9-species 21-steps reaction mechanism of O’Conaire et al. [1]. As in the reference experiments, autoignition can be observed in the simulations. Influences of the turbulence modeling as well as of the hot flue gas temperature are investigated. The onset and the propagation of the ignition kernels are studied based on the SAS modeling results. The obtained numerical results are discussed and compared with data from experimental autoignition studies.


Sign in / Sign up

Export Citation Format

Share Document