scholarly journals Characterization of Pore Structures and Implications for Flow Transport Property of Tight Reservoirs: A Case Study of the Lucaogou Formation, Jimsar Sag, Junggar Basin, Northwestern China

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1251
Author(s):  
Yang Su ◽  
Ming Zha ◽  
Keyu Liu ◽  
Xiujian Ding ◽  
Jiangxiu Qu ◽  
...  

Quantitate characterization of pore structures is fundamental to elucidate fluid flow in the porous media. Pore structures of the Lucaogou Formation in the Jimsar Sag were investigated using petrography, mercury intrusion capillary porosimetry (MICP) and X-ray computed tomography (X-ray μ-CT). MICP analyses demonstrate that the pore topological structure is characterized by segmented fractal dimensions. Fractal dimension of small pores (r < Rapex) ranges from 2.05 to 2.37, whereas fractal dimension of large pores (r > Rapex) varies from 2.91 to 5.44, indicating that fractal theory is inappropriate for the topological characterization of large pores using MICP. Pore volume of tight reservoirs ranges over nine orders of magnitude (10−1–108 μm3), which follows a power-law distribution. Fractal dimensions of pores larger than a lower bound vary from 1.66 to 2.32. Their consistence with MICP results suggests that it is an appropriate indicator for the complex and heterogeneous pore network. Larger connected pores are primary conductive pathways regardless of lithologies. The storage capacity depends largely on pore complexity and heterogeneity, which is negatively correlated with fractal dimension of pore network. The less heterogeneous the pore network is, the higher storage capability it would have; however, the effect of pore network heterogeneity on the transport capability is much more complicated.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Fengjuan Dong ◽  
Na Liu ◽  
Zhen Sun ◽  
Xiaolong Wei ◽  
Haonan Wang ◽  
...  

The complex pore structure of low-permeability sandstone reservoir makes it difficult to characterize the heterogeneity of pore throat. Taking the reservoir of Sanjianfang formation in QL oilfield as an example, the fractal dimension of different storage spaces is calculated by using fractal theory based on casting thin section, scanning electron microscope, and high-pressure mercury injection, and the correlation between porosity, permeability, and contribution of different storage space permeabilities is analyzed. The results show that the reservoir of Sanjianfang formation in QL oilfield mainly develops small pores, fine pores, and micropores, and the fractal dimension of micropore structure is between 2.6044 and 2.9982, with an average value of 2.8316. The more complex the pore structure is, the stronger the microheterogeneity is. The higher the fractal dimension, the more complex the pore structure and the smaller the porosity and permeability. The fractal dimensions of small pores, fine pores, and micropores increase successively with the decrease in pore radius, and the microstructure heterogeneity of large pores is weaker than that of small pores. It provides a theoretical basis for the exploration and development of low-permeability sandstone reservoirs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bing Sun ◽  
Shun Liu ◽  
Sheng Zeng ◽  
Shanyong Wang ◽  
Shaoping Wang

AbstractTo investigate the influence of the fissure morphology on the dynamic mechanical properties of the rock and the crack propagation, a drop hammer impact test device was used to conduct impact failure tests on sandstones with different fissure numbers and fissure dips, simultaneously recorded the crack growth after each impact. The box fractal dimension is used to quantitatively analyze the dynamic change in the sandstone cracks and a fractal model of crack growth over time is established based on fractal theory. The results demonstrate that under impact test conditions of the same mass and different heights, the energy absorbed by sandstone accounts for about 26.7% of the gravitational potential energy. But at the same height and different mass, the energy absorbed by the sandstone accounts for about 68.6% of the total energy. As the fissure dip increases and the number of fissures increases, the dynamic peak stress and dynamic elastic modulus of the fractured sandstone gradually decrease. The fractal dimensions of crack evolution tend to increase with time as a whole and assume as a parabolic. Except for one fissure, 60° and 90° specimens, with the extension of time, the increase rate of fractal dimension is decreasing correspondingly.


2018 ◽  
Vol 159 ◽  
pp. 01006
Author(s):  
Bagus Hario Setiadji ◽  
Supriyono ◽  
Djoko Purwanto

Several studies have shown that fractal theory can be used to analyze the morphology of aggregate materials in designing the gradation. However, the question arises whether a fractal dimension can actually represent a single aggregate gradation. This study, which is a part of a grand research to determine aggregate gradation based on known asphalt mixture specifications, is performed to clarify the aforementioned question. To do so, two steps of methodology were proposed in this study, that is, step 1 is to determine the fractal characteristics using 3 aggregate gradations (i.e. gradations near upper and lower bounds, and middle gradation); and step 2 is to back-calculate aggregate gradation based on fractal characteristics obtained using 2 scenarios, one-and multi-fractal dimension scenarios. The results of this study indicate that the multi-fractal dimension scenario provides a better prediction of aggregate gradation due to the ability of this scenario to better represent the shape of the original aggregate gradation. However, careful consideration must be observed when using more than two fractal dimensions in predicting aggregate gradation as it will increase the difficulty in developing the fractal characteristic equations.


2012 ◽  
Vol 204-208 ◽  
pp. 1923-1928
Author(s):  
Bo Tan ◽  
Rui Hua Yang ◽  
Yan Ting Lai

The paper presents the fractal dimension formula of distribution of asphalt mixture aggregate diameter by the deducing mass fractal characteristics function. Taking AC-20 and SMA-20 as examples, selected 6 groups of representative grading curves within the grading envelope proposed by the present specification, and calculated their fractal dimensions. The asphalt mixture gradation has fractal dimension D (D∈(1,3)), and the fractal of continuous gradation is single while the fractal of gap-gradation shows multi-fractal with 4.75 as the dividing point. Fractal dimension of aggregate gradation of asphalt mixture reflect the structure characteristics of aggregate distribution, that is, finer is aggregate, bigger is the fractal dimension.


2020 ◽  
Vol 19 (03) ◽  
pp. 2050025 ◽  
Author(s):  
Shahul Mujib Kamal ◽  
Sue Sim ◽  
Rui Tee ◽  
Visvamba Nathan ◽  
Hamidreza Namazi

Legs are the contact point of humans during walking. In fact, leg muscles react when we walk in different conditions (such as different speeds and paths). In this research, we analyze how walking path affects leg muscles’ reaction. In fact, we investigate how the complexity of muscle reaction is related to the complexity of path of movement. For this purpose, we employ fractal theory. In the experiment, subjects walk on different paths that have different fractal dimensions and then we calculate the fractal dimension of Electromyography (EMG) signals obtained from both legs. The result of our analysis showed that the complexity of EMG signal increases with the increment of complexity of path of movement. The conducted statistical analysis also supported the result of analysis. The method of analysis used in this research can be further applied to find the relation between complexity of path of movement and other physiological signals of humans such as respiration and Electroencephalography (EEG) signal.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jun Fu ◽  
Yue Yu

It is important to control and predict the macroscopic properties through pore structure parameters of cement-based materials. Microscopic pore structure of concrete has many characteristics, such as sizes and disordered distribution. It is necessary to use fractal theory to describe the pore structure of concrete. In order to establish the relationship between the pore structure characteristics of aerated concrete and porosity, shape factor, pore superficial area, average pore diameter, and average diameter, the fractal dimension of the pore structure was used to evaluate the pore structure characteristics of aerated concrete. The X-ray computed tomography (CT) images of the aerated concrete block pore structure were obtained by using the XTH320 series X-ray three-dimensional microscope. The pore characteristics of aerated concrete block were studied according to Image-Pro Plus (IPP). Based on the research of the fractal dimension measurement methods, the proposed MATLAB program automatically determined the fractal dimension of the aerated concrete block pore structure images. The research results indicated that the small pores (20 μm∼60 μm) of aerated concrete block account for a large percentage compared with the large pores (60 μm∼400 μm or more) from pore diameter distribution and the pore structure of aerated concrete block has obvious fractal features and the fractal dimension of aerated concrete block pore structure images were calculated to be in the range of 1.775–1.805. The pore fractal dimension has a strong correlation with the pore fractal characteristics of aerated concrete blocks. The fractal dimension of the pore structure linearly increases with porosity, shape factor, and pore surface area. The fractal dimension of the pore structure decreases with the average pore size and average diameter. Thus, the fractal dimension of the pore structure that is calculated by the MATLAB program based on fractal theory can be assumed as the integrative evaluation index for evaluating the pore structure characteristic of aerated concrete block.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Amir Lashgari ◽  
Shahriar Ghamami ◽  
Saeedeh Shahbazkhany ◽  
Guillermo Salgado-Morán ◽  
Daniel Glossman-Mitnik

Bimetallic materials, which have the ability to convert heat change into mechanical movement, normally consist of two bonded strips of dissimilar metals that expand at different rates. We describe how we made a manganese-chromium (Mn-Cr) bimetallic nanocomposite using the centrifuge method and a low-to-high approach. We conducted scanning electron microscope (SEM) imaging, energy-dispersive X-ray spectroscopy (EDX) analysis, and X-ray diffraction spectra of the nanocomposite to prove its identity. We examined how centrifuge speed, process time, and the use of an “intruder agent” affected the properties of the material. The fractal dimension is a significant factor that can be used to approximate the surface roughness, the texture segmentation, and an image of the studied compounds. We calculated the technique of fractal dimensions using image-processing values on a computer and histogram plot with the SEM image of the Mn-Cr bimetallic nanocomposite using MATLAB software. We applied the Statistical Package for the Social Sciences software for statistics data extracted from the SEM image of the nanocomposite and obtained the following results: mean = 1.778, median = 1.770, max = 1.98, min = 1.60, skewness = 0.177, range = 0.38, and harmonic mean = 1.771 for fractal dimension of the SEM image.


2022 ◽  
Vol 2152 (1) ◽  
pp. 012020
Author(s):  
Fangyao Dai

Abstract Fractal dimension can be used to the pore surface characterize. For pore structures in different sizes, the calculation models of fractal theory should be distinguished due to the different principles of the gas adsorption experiments. To further study the adaptability of the fractal model for gas adsorption experimental data, the author collected shale samples of Longmaxi formation from Well JY1, then CO2 and N2 adsorption provided the PSD curves. In addition, the fractal dimensions of micropore and mesopore were calculated by the Jaroniec fractal model and Frenkel–Halsey–Hill (FHH) fractal model respectively. The research shows that the Jaroniec model may be suitable to calculate CO2 adsorption data and could characterize the fractal dimension of micropore, while the FHH model may be suitable to calculate N2 adsorption data in the high relative pressure region. It suggests that the micropore and mesopore could have different dimensions and the evaluation of the structure in shale pores should consider both of them.


2019 ◽  
Vol 8 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Yuan Gao ◽  
Hongwen Jing ◽  
Zefu Zhou

Abstract Nano cement additive using a hybrid of graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs) combines the excellent affinity of GO and the superior mechanical properties of MWCNTs. Ultrasonication is the key process to disperse the GO/MWCNTs and further optimizes the pore structures of cement-based pastes. Fractal dimension can effectively and quantitatively characterize the pore structures of cementitious composites. The present study investigates the fractal dimensions of pore structures of GO/MWCNT-OPC pastes under power- and time-controlled ultrasonication based on the mercury intrusion porosimetry (MIP) tests data. The finding of this study shows that comparing to calculating the fractal dimension of the overall pore size range, assessing the variations of fractal dimension of individual pore size range is more effective in evaluating the pore characteristic. The fractal dimension of larger capillary pores $$\left( {{D}_{>{{10}^{4}}nm}} \right)$$can be use to describe the change of pore structure of GO/MWCNT-OPC pastes under ultrasonication treatment with sufficient accuracy as higher value of $${{D}_{>{{10}^{4}}nm}}$$indicates better pore characteristics. The fractal dimension change trend of mesopores is always opposite to that of bigger capillary pores. Modest increment in both power- and time-controlled ultrasonication seems to result in the increase of the fractal dimension of capillary pores and lead to better reinforcement effects. Prolongation of ultrasonication time slightly influences the pore structure of the specimens, while nano cement additives exposed to excess ultrasonication power fail to afford adequate reinforcing effect and finally cause the deterioration of the pore structures. The findings of this study can provide helpful information of GO/MWCNT-OPC pastes and ultrasonication treatment in the future.


Sign in / Sign up

Export Citation Format

Share Document