scholarly journals An Efficiency Analysis of 27 Level Single-Phase Asymmetric Inverter without Regeneration

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1459
Author(s):  
Eduardo Espinosa ◽  
Pedro Melín ◽  
Carlos Baier ◽  
José Espinoza ◽  
Hugo Garcés

For medium voltage applications, multilevel inverters are used. One of its classic topologies is the Cascaded H-Bridge, which requires isolated DC voltages to work. Depending on the DC voltage ratio used in the Cascaded H-bridge can be classified into symmetric and asymmetric. In comparison between symmetric and asymmetric inverters, the latter can generate an AC output voltage with more output voltage levels. DC voltage ratio most documented are binary and trinary. The last can generate an AC voltage of 3n = 27 levels is obtained, using n = 3 inverters in cascade and NLM modulation, which generates a flow power of the load to the inverters (regeneration). This work analyzes the semiconductor losses (switching and conduction) and the THD of the AC output voltage in function of index modulation, considering a non-regenerative modulation technique for a 27-level single-phase asymmetric inverter. To confirm the theoretical analyzes, simulation and experimental results are shown.

2019 ◽  
Vol 28 (03) ◽  
pp. 1950038 ◽  
Author(s):  
Ebrahim Babaei ◽  
Concettina Buccella ◽  
Carlo Cecati

Multilevel inverters are generally used in medium-voltage and high-power applications. In this paper, a new 8-level basic structure for cascaded multilevel inverters is proposed. Based on proposed basic structure, two different cascaded multilevel topologies are proposed. The proposed cascaded multilevel inverters use less number of power switches, IGBTs and dc voltage sources compared with the conventional multilevel inverters. In order to generate all steps at the output voltage, three different algorithms to determine the amplitudes of dc voltage sources are presented. To reconfirm the performance and correct operation of the proposed topologies, the experimental results for a 15-level inverter are presented.


2017 ◽  
Vol 26 (12) ◽  
pp. 1750203 ◽  
Author(s):  
Ebrahim Babaei ◽  
Mohammad Shadnam Zarbil ◽  
Mehran Sabahi

In this paper, a new topology for cascaded multilevel inverters based on quasi Z-source converter is proposed. In the proposed topology, the magnitude of output voltage is not limited to dc voltage source, while the magnitude of output voltage of conventional cascaded multilevel inverters is limited to dc voltage source. In the proposed topology, the magnitude of output voltage can be increased by controlling the duty cycle of shoot-through (ST) state, transformer turn ratio, and the number of switched inductors in the Z-source network. As a result, there is no need for extra dc–dc converter. In the proposed topology, the total harmonic distortion (THD) is decreased in comparison with the conventional Z-source inverters. The proposed topology directly delivers power from a power source to load. In addition, in the proposed basic unit, higher voltage gain is achieved in higher modulation index which is an advantage for the proposed base unit. The performance of the proposed topology is verified by the experimental results of five-level single-phase inverter.


Author(s):  
R. Palanisamy ◽  
A. Velu ◽  
K. Selvakumar ◽  
D. Karthikeyan ◽  
D. Selvabharathi ◽  
...  

This paper deals the implementation of 3-level output voltage using dual 2-level inverter with control of sub-region based Space Vector Modulation (SR-SVM). Switching loss and voltage stress are the most important issues in multilevel inverters, for keep away from these problems dual inverter system executed. Using this proposed system, the conventional 3-level inverter voltage vectors and switching vectors can be located. In neutral point clamped multilevel inverter, it carries more load current fluctuations due to the DC link capacitors and it requires large capacitors. Based on the sub-region SVM used to control IGBT switches placed in the dual inverter system. The proposed system improves the output voltage with reduced harmonic content with improved dc voltage utilisation. The simulation and hardware results are verified using matlab/simulink and dsPIC microcontroller.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 268 ◽  
Author(s):  
Ali Shojaei ◽  
Bahram Najafi ◽  
Hani Vahedi

In this paper the standalone operation of the modified seven-level Packed U-Cell (MPUC) inverter is presented and analyzed. The MPUC inverter has two DC sources and six switches, which generate seven voltage levels at the output. Compared to cascaded H-bridge and neutral point clamp multilevel inverters, the MPUC inverter generates a higher number of voltage levels using fewer components. The experimental results of the MPUC prototype validate the appropriate operation of the multilevel inverter dealing with various load types including motor, linear, and nonlinear ones. The design considerations, including output AC voltage RMS value, switching frequency, and switch voltage rating, as well as the harmonic analysis of the output voltage waveform, are taken into account to prove the advantages of the introduced multilevel inverter.


2019 ◽  
Vol 29 (02) ◽  
pp. 2050019
Author(s):  
G. Chitrakala ◽  
N. Stalin ◽  
V. Mohan

The distributed generation involving multiple photovoltaic sources and synthesizing high-quality ac voltage from those multiple dc sources are nascent research ambits. A host of multilevel inverters (MLIs) has been ascertained for performing above errand diligently, where the component count is obnoxious. The single phase seven-level inverter is an acquiescent compromise between the circuit complexity and the quality of the output. Further enhancement on the performance can be succored through optimizing dc link voltages and switching angles. This paper proposes a component count pruned MLI structure and also a refined genetic algorithm (RGA)-based optimization scheme for the computation of both dc link voltages and switching angles. Previous attempts for this problem have solved the switching angles with the objective of resulting minimum harmonic content in the staircase-shaped output voltage. The dc link voltage of each level is however assumed to be the same and constant. As an extension, RGA-based optimization of both dc link voltages and switching angles is triumphed. The harmonic profile of the proposed switching strategy is simulated and also corroborated by a hardware prototype. In practice, the proposed fundamental switched strategy is apposite, in which each dc voltage can be self-maintained and independently controlled. In addition, a method for designing the passive LC filter is also presented.


2015 ◽  
Vol 793 ◽  
pp. 167-171
Author(s):  
Mohd Aizuddin Yusof ◽  
Yee Chyan Tan ◽  
M. Othman ◽  
S.S. Lee ◽  
M.A. Roslan ◽  
...  

Multilevel inverters are one of the preferred inverter choices for solar photovoltaic (PV) applications. While these inverters are capable of producing AC staircase output voltage waveform, the total harmonic distortion (THD) of the output voltage waveform can become worse if the switching angle of each voltage level is not carefully chosen. In this paper, four switching angle arrangement techniques are presented and the switching angles generated by these techniques are applied to a new single-phase boost multilevel (SPBM) inverter. The performance of 3-, 5-, 7-, 9-and 11-level SPBM inverter having four different sets of switching angles derived using the aforementioned techniques have been evaluated and compared using PSIM software. Simulation results show that one of the techniques is able to produce an output voltage waveform with the lowest THD, whilst the other generates an output voltage waveform with the highest fundamental voltage component.


Author(s):  
Hassan Salman Hamad

<span>Researchers<strong> </strong>have found interest in the multilevel inverters (MLI) owing to the low total harmonic distortion (THD) associated with their output voltage, as well as their low electromagnetic interference (EMI). The MLI represents an effective and feasible solution for enhancing power demand and minimizing AC waveforms’ harmonics as they generate a preferred level of output voltage as inputs from varying levels of DC voltages. In this paper, the performance of a seven-level cascaded H-bridge MLI with an asymmetrical number of power switches was evaluated. The simulation performance is shown to validate the operating principle of the single-phase cascaded H-bridge inverter. To control the MLI, a pulse width modulation approach was utilized. The operating principle of the MLI was verified via simulation using PSIM software.</span>


2015 ◽  
Vol 793 ◽  
pp. 280-285
Author(s):  
J.A. Soo ◽  
N.A. Rahman ◽  
J.H. Leong

This paper proposed a novel single-stage square wave buck-boost inverter (SWBBI). The proposed inverter is designed by using dual buck-boost converters. The input DC voltage of the proposed inverter can be either stepped-down or stepped-up in square output voltage waveform depending on the duty-cycle applied for each buck-boost converter. This characteristic is not found in conventional voltage source inverter where the output voltage is always lower than the input DC voltage. The proposed inverter is analyzed by a series of simulations using MATLAB/Simulink as well as experiments by using different values of duty-cycle. A conclusion about the feasibility of the proposed inverter is given by comparing the simulation and experimental results.


2017 ◽  
Vol 7 (1.2) ◽  
pp. 205
Author(s):  
R. Anand ◽  
S. Muthu Balaji

In this project, an advanced design of simulated multilevel inverters is proposed, which helps to boost the number of output voltage levels and decrease the number of power switches, driver circuits, and the maximum charge of the inverter. It is significant to note down advanced design, the unidirectional power switches are used. Results in decreased complexity and economical. The comparison is done with the conventional topologies and confirmed by simulation outcome. The planned design by using the new technique in produce all voltage levels for a stage inverter which its performance and functional accuracy is confirmed by simulation and experimental results.


This paper proposes a single phase modified seven level U-Cell inverter configurations in which the advanced process controller has been implemented. By using the boost operation the output of the inverter will produce higher output voltage when compared to the maximum DC source value used. To obtain maximum power the designed inverter is implemented with the photovoltaic system where the power is produced from two different PV panels which is connected to DC link by using DC-DC converters. The semiconductor switches and DC links are used to generate the inverter AC output voltages with seven levels. Two PV panels with different voltages are used in which two panels voltages are combined and their powers are injected to the grid. To validate the dynamic performance of the proposed U-Cell inverter the advanced process controller is used in the inverter connected to the grid. The controller is designed and processed to maintain the capacitor voltage to obtain the desired AC output with desired magnitude. The dynamic performance during changes in the supply current and DC voltage of capacitor for the process controller has been obtained.


Sign in / Sign up

Export Citation Format

Share Document