scholarly journals Integrating Concentrated Optics for Ambient Perovskite Solar Cells

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2714
Author(s):  
Maria Khalid ◽  
Anurag Roy ◽  
Shubhranshu Bhandari ◽  
Senthilarasu Sundaram ◽  
Tapas K. Mallick

Metal halide perovskite solar cells (PSCs) are considered an effectual way to enhance photovoltaic (PV) properties, leading to low-cost and high efficiency. PSCs have experienced rapid improvement in the last ten years. The device’s energy production increases extensively in the presence of concentrated light. The use of concentrated optics in solar cells has spurred the PV industry towards tremendous research. Incorporating the concentrated optic into the PV system as a concentrated PV (CPV) means it can capture light effectively and operate at increased efficiencies under concentrated irradiance. This work addresses an initial assessment of the power conversion efficiency (PCE) enhancement of the ambient PSCs by externally integrating concentrated optics. Significantly, the concentrated optics exhibit ~90% of the PCE enhancement under the solar irradiance of 400 W/m2, whereas 16% of the PCE increase was observed when the solar irradiance changed to 1000 W/m2. During optics integration, a considerable elevation of short-circuit current predominately facilitated the overall efficiency enhancement of the PSC. A systematic PV parameters effect on the optic integration on PSCs was further scrutinized. Therefore, this work signifies a possible way to alleviate the PCE of carbon-based PSC using concentrated optics. This work focuses on integrating CPVs into PSCs, preventing PSC stability and scalability issues, with light conditioning techniques.

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2726
Author(s):  
Wensheng Lan ◽  
Dazheng Chen ◽  
Qirui Guo ◽  
Baichuan Tian ◽  
Xiaoping Xie ◽  
...  

All-inorganic carbon-based CsPbIBr2 perovskite solar cells (PSCs) have attracted increasing interest due to the low cost and the balance between bandgap and stability. However, the relatively narrow light absorption range (300 to 600 nm) limited the further improvement of short-circuit current density (JSC) and power conversion efficiency (PCE) of PSCs. Considering the inevitable reflectance loss (~10%) at air/glass interface, we prepared the moth-eye anti-reflector by ultraviolet nanoimprint technology and achieved an average reflectance as low as 5.15%. By attaching the anti-reflector on the glass side of PSCs, the JSC was promoted by 9.4% from 10.89 mA/cm2 to 11.91 mA/cm2, which is the highest among PSCs with a structure of glass/FTO/c-TiO2/CsPbIBr2/Carbon, and the PCE was enhanced by 9.9% from 9.17% to 10.08%. The results demonstrated that the larger JSC induced by the optical reflectance modulation of moth-eye anti-reflector was responsible for the improved PCE. Simultaneously, this moth-eye anti-reflector can withstand a high temperature up to 200 °C, and perform efficiently at a wide range of incident angles from 40° to 90° and under various light intensities. This work is helpful to further improve the performance of CsPbIBr2 PSCs by optical modulation and boost the possible application of wide-range-wavelength anti-reflector in single and multi-junction solar cells.


2021 ◽  
Vol 26 (4) ◽  
Author(s):  
Cristian Moisés Díaz-Acosta ◽  
Antonia Martínez-Luévanos ◽  
Sofía Estrada-Flores ◽  
Lucia Fabiola Cano-Salazar ◽  
Elsa Nadia Aguilera-González ◽  
...  

ABSTRACT Solar energy is one of the most promising and developed technologies in recent years, due to its high efficiency and low cost. Perovskite-type solar cells have been the focus of attention by the world scientific community. The main objective of this article is to present an (PSCs) analysis of the various investigations reported on the development of ABX3 inorganic halide perovskite-based solar cells, with emphasis in the effect that temperature and humidity have on their chemical and crystal structure stability. The main methods that are used to obtain ABX3 inorganic halide perovskites are also presented and analyzed. An analysis about the structure of these photovoltaic cells and how to improve their efficiency (PCS), fill factor (FF), short circuit current density (Jsc) and open circuit voltage (Voc) of these devices is presented. As a conclusion, a relationship of the methods, synthesis variables, and type of inorganic halide perovskite used for the development of devices with the best efficiencies is presented; the trends towards which this area of science is heading are also highlighted.


2019 ◽  
Vol 966 ◽  
pp. 501-506
Author(s):  
Ahmad Sholih ◽  
Dadan Hamdani ◽  
Sigit Tri Wicaksono ◽  
Mas Irfan P. Hidayat ◽  
Yoyok Cahyono ◽  
...  

In this paper, we have investigated the effect of the work function of transparent conducting oxides (TCO) on the performance of a-Si:H p-i-n solar cells, including open circuit voltage (VOC), short circuit current (JSC), fill factor (FF) and conversion efficiency, using AFORS-HET software. The simulation has focused on two layers: front contact work function (ΦTCO-front) and back contact work function (ΦTCO-back) with various band from 4.7 eV to 5.3 eV and 4.2 eV to 4.9 eV respectively. From the simulation results, we know that the work function of TCO greatly affects the performance of solar cells such as Voc, Jsc, FF and conversion efficiency. By optimization, we arrive at results for Voc, Jsc, FF and conversion efficiencies of 0.88 V, 8.95 mA / cm2, 65% and 5.1% respectively. This result is obtained on ΦTCO-front 5.2 eV. When ΦTCO-front 5.2 eV, the value of VOC, FF and conversion efficiency has been saturated, while the value of the J sc actually begins to decrease. Furthermore, when the ΦTCO - back is 4.3 eV, we get the best results for VOC, Jsc, FF and conversion Efficiency of 0.9 V, 8.96 mA / cm2, 73 % and 5.9 % respectively. When ΦTCO-back 4.3 eV, the value of VOC, FF and conversion efficiency begins to decrease, while the value of the Jsc does’t change significantly. These optimizations may help in producing low cost high efficiency p-i-n solar cells experimentally.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3295
Author(s):  
Andrzej Sławek ◽  
Zbigniew Starowicz ◽  
Marek Lipiński

In recent years, lead halide perovskites have attracted considerable attention from the scientific community due to their exceptional properties and fast-growing enhancement for solar energy harvesting efficiency. One of the fundamental aspects of the architecture of perovskite-based solar cells (PSCs) is the electron transport layer (ETL), which also acts as a barrier for holes. In this work, the influence of compact TiO2 ETL on the performance of planar heterojunction solar cells based on CH3NH3PbI3 perovskite was investigated. ETLs were deposited on fluorine-doped tin oxide (FTO) substrates from a titanium diisopropoxide bis(acetylacetonate) precursor solution using the spin-coating method with changing precursor concentration and centrifugation speed. It was found that the thickness and continuity of ETLs, investigated between 0 and 124 nm, strongly affect the photovoltaic performance of PSCs, in particular short-circuit current density (JSC). Optical and topographic properties of the compact TiO2 layers were investigated as well.


Author(s):  
Li Zhang ◽  
Hui Li ◽  
Jing Zhuang ◽  
Yigang Luan ◽  
Sixuan Wu ◽  
...  

The low-cost material antimony trifluoride (SbF3) was doped into the commonly used tin dioxide (SnO2) for the first time, and the SbF3-doped SnO2 as an electron transport layer (ETL) was...


Inventions ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 45 ◽  
Author(s):  
Waleed I. Hameed ◽  
Baha A. Sawadi ◽  
Safa J. Al-Kamil ◽  
Mohammed S. Al-Radhi ◽  
Yasir I. A. Al-Yasir ◽  
...  

Prediction of solar irradiance plays an essential role in many energy systems. The objective of this paper is to present a low-cost solar irradiance meter based on artificial neural networks (ANN). A photovoltaic (PV) mathematical model of 50 watts and 36 cells was used to extract the short-circuit current and the open-circuit voltage of the PV module. The obtained data was used to train the ANN to predict solar irradiance for horizontal surfaces. The strategy was to measure the open-circuit voltage and the short-circuit current of the PV module and then feed it to the ANN as inputs to get the irradiance. The experimental and simulation results showed that the proposed method could be utilized to achieve the value of solar irradiance with acceptable approximation. As a result, this method presents a low-cost instrument that can be used instead of an expensive pyranometer.


Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 964 ◽  
Author(s):  
Yue Zhang ◽  
Haiming Zhang ◽  
Xiaohui Zhang ◽  
Lijuan Wei ◽  
Biao Zhang ◽  
...  

Organic–inorganic hybrid perovskite solar cells (PSCs) have made immense progress in recent years, owing to outstanding optoelectronic properties of perovskite materials, such as high extinction coefficient, carrier mobility, and low exciton binding energy. Since the first appearance in 2009, the efficiency of PSCs has reached 23.3%. This has made them the most promising rival to silicon-based solar cells. However, there are still several issues to resolve to promote PSCs’ outdoor applications. In this review, three crucial aspects of PSCs, including high efficiency, environmental stability, and low-cost of PSCs, are described in detail. Recent in-depth studies on different aspects are also discussed for better understanding of these issues and possible solutions.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Guiming Peng ◽  
Xueqing Xu ◽  
Gang Xu

The ramping solar energy to electricity conversion efficiencies of hybrid organic-inorganic perovskite solar cells during the last five years have opened new doors to low-cost solar energy. The record power conversion efficiency has climbed to 19.3% in August 2014 and then jumped to 20.1% in November. In this review, the main achievements for perovskite solar cells categorized from a viewpoint of device structure are overviewed. The challenges and prospects for future development of this field are also briefly presented.


Author(s):  
Duc

Perovskites are increasingly proved to be a promising candidate for making absorber materials for high-efficiency and low-cost next-generation solar cells. There are several models proposed for perovskite solar cells similar to the conventional solar cells; their operation also has specific characteristics and requires the development of a more general physical model to study, thus optimizing the cells and improving the performance of the panels. This paper develops such a physics-based intuitive model to consider the performance of two high-efficiency types of perovskite solar cells, taking into account heterogeneous properties, with filtered transport layers, recombination, charge selection, and voltage-dependent collector. This model would allow experimentally to estimate critical parameters of perovskite solar cells, understand the performance bottleneck, and predict the performance of perovskite solar cells and suggest further study for perovskite solar cell technology development.   


2021 ◽  
Vol 1016 ◽  
pp. 863-868
Author(s):  
Tika Erna Putri ◽  
Yuan Hao ◽  
Fadzai Lesley Chawarambwa ◽  
Hyunwoong Seo ◽  
Min Kyu Son ◽  
...  

The losses of solar cells are consisted of electrical losses and optical losses. Optical losses chiefly reduce the short-circuit current. Here we apply bifacial cell approach to increase light absorption and the short-circuit current of dye sensitized solar cells (DSSCs). We have employed activated carbon (AC) as a very low cost counter electrode, an alternative to Pt counter electrode. Addition of dimethyl sulfoxide (DMSO) and titanium carbonitride (TiCN) to AC increase the efficiency of bifacial DSSC at a mirror angle of from 5.10% to and , respectively. These results indicate that AC has the potential to replace Pt as a very low cost counter electrode of bifacial DSSCs. The bifacial DSSC system using double plane mirrors improve PCE to for Pt counter electrode at a mirror angle of , and for AC counter electrode at a mirror angle of , respectively.


Sign in / Sign up

Export Citation Format

Share Document