scholarly journals Opening Up Transactive Systems: Introducing TESS and Specification in a Field Deployment

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3970
Author(s):  
Marie-Louise Arlt ◽  
David P. Chassin ◽  
L. Lynne Kiesling

Transactive energy systems (TS) use automated device bidding to access (residential) demand flexibility and coordinate supply and demand on the distribution system level through market processes. In this work, we present TESS, a modularized platform for the implementation of TS, which enables the deployment of adjusted market mechanisms, economic bidding, and the potential entry of third parties. TESS thereby opens up current integrated closed-system TS, allows for the better adaptation of TS to power systems with high shares of renewable energies, and lays the foundations for a smart grid with a variety of stakeholders. Furthermore, despite positive experiences in various pilot projects, one hurdle in introducing TS is their integration with existing tariff structures and (legal) requirements. In this paper, we therefore describe TESS as we have modified it for a field implementation within the service territory of Holy Cross Energy in Colorado. Importantly, our specification addresses challenges of implementing TS in existing electric retail systems, for instance, the design of bidding strategies when a (non-transactive) tariff system is already in place. We conclude with a general discussion of the challenges associated with “brownfield” implementation of TS, such as incentive problems of baseline approaches or long-term efficiency.

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 199
Author(s):  
Chengwei Lei ◽  
Weisong Tian

Fused contactors and thermal magnetic circuit breakers are commonly applied protective devices in power distribution systems to protect the circuits when short-circuit faults occur. A power distribution system may contain various makes and models of protective devices, as a result, customizable simulation models for protective devices are demanded to effectively conduct system-level reliable analyses. To build the models, thermal energy-based data analysis methodologies are first applied to the protective devices’ physical properties, based on the manufacturer’s time/current data sheet. The models are further enhanced by integrating probability tools to simulate uncertainties in real-world application facts, for example, fortuity, variance, and failure rate. The customizable models are expected to aid the system-level reliability analysis, especially for the microgrid power systems.


Author(s):  
Muhammad Hussain ◽  
Yan Gao ◽  
Zhihong Xu

Demand response (DR) is one of the major stakeholders in the smart grid and has been used as an energy reconciler between supply and demand. After a literature overview, the importance of the paper is enhanced by having a theoretical and behavioral-based analysis of DR in power systems. In this work, the potential factors that influence more DR among customers and the residential market as a whole have been discussed. The customers’ elastic demand approach can pave the way for adapting a responsive demand mechanism that ensures the system reliability and cost effective measures. Alternatively, this approach can make the program more effective and supportive in serving the social welfare as whole.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 246 ◽  
Author(s):  
Weiliang Wang ◽  
Dan Wang ◽  
Liu Liu ◽  
Hongjie Jia ◽  
Yunqiang Zhi ◽  
...  

Energy storage systems play a crucial role in ensuring stable operation. However, the development of system-level energy storage is hindered due to the restrictions of economy, geography, and other factors. Transitions of traditional power systems into integrated energy distribution systems (IEDS) have provided new solutions to the problems mentioned above. Through intelligent control management methods, the utilization of multi-energy-type resources both on the supply and demand sides shows the potential for equivalent storage characteristics. Inspired by the aggregation principles, this paper aims at proposing a novel model named generalized multi-source energy storage (GMSES), including the modeling and cooperation of three kinds of available resources: conventional energy storage (CES), multi-energy flow resources (MFR), and demand response resources (DRR). Compared with the conventional means of storage, GMSES can be regarded as a more cost-effective and flexible participant in the proposed hierarchical energy scheduling framework that can realize system-level storage services in IEDS. On this basis, a multi-timescale energy scheduling strategy is proposed to reshape the regulation of IEDS operations and deal with the fluctuations caused by renewable energy and loads, where the general parameter serialization (GPS)-based control strategy is utilized to select and control the responsive loads in DRR. Furthermore, a hierarchical scheduling algorithm is developed to generate the optimal set-points of GMSES. Case studies are analyzed in an electricity-gas coupled IEDS. The simulation results show that the coupled co-optimization GMSES model is conducive to achieving the goal of self-management and economical operation, while the influence of the underlying IEDS on the upper energy system is reduced, as the tie-line power fluctuations are smoothed out.


Mathematics ◽  
2018 ◽  
Vol 6 (9) ◽  
pp. 158
Author(s):  
Farzaneh Pourahmadi ◽  
Payman Dehghanian

Allocation of the power losses to distributed generators and consumers has been a challenging concern for decades in restructured power systems. This paper proposes a promising approach for loss allocation in power distribution systems based on a cooperative concept of game-theory, named Shapley Value allocation. The proposed solution is a generic approach, applicable to both radial and meshed distribution systems as well as those with high penetration of renewables and DG units. With several different methods for distribution system loss allocation, the suggested method has been shown to be a straight-forward and efficient criterion for performance comparisons. The suggested loss allocation approach is numerically investigated, the results of which are presented for two distribution systems and its performance is compared with those obtained by other methodologies.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 287
Author(s):  
Jerzy Andruszkiewicz ◽  
Józef Lorenc ◽  
Agnieszka Weychan

Demand side response is becoming an increasingly significant issue for reliable power systems’ operation. Therefore, it is desirable to ensure high effectiveness of such programs, including electricity tariffs. The purpose of the study is developing a method for analysing electricity tariff’s effectiveness in terms of demand side response purposes based on statistical data concerning tariffs’ use by the consumers and price elasticity of their electricity demand. A case-study analysis is presented for residential electricity consumers, shifting the settlement and consequently the profile of electricity use from a flat to a time-of-use tariff, based on the comparison of the considered tariff groups. Additionally, a correlation analysis is suggested to verify tariffs’ influence of the power system’s peak load based on residential electricity tariffs in Poland. The presented analysis proves that large residential consumers aggregated by tariff incentives may have a significant impact on the power system’s load and this impact changes substantially for particular hours of a day or season. Such efficiency assessment may be used by both energy suppliers to optimize their market purchases and by distribution system operators in order to ensure adequate generation during peak load periods.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 513
Author(s):  
Henryk Majchrzak ◽  
Michał Kozioł

The balancing of the power of the Polish Power System (KSE) is a key element in ensuring the safety of electric energy supplies to end users. This article presents an analysis of the power demand in power systems (PS), with emphasis on the typical power variability both in subsequent hours of the day and on particular days and in particular months each year. The methodology for calculating the costs of electric energy undelivered to the end users and the amount of these costs for KSE is presented. Different possibilities have been analyzed for balancing power systems’ peak load and assumptions have been formulated for calculating the amount of the related costs. On this basis, a comparative analysis has been made of the possibility to balance peak load using operators’ system services, trans-border connections, and various energy storage solutions. On the basis of the obtained results, optimal tools have been proposed for market-based influence from transmission and distribution system operators on energy market participants’ behaviors in order to ensure the power systems’ operating safety and continuous energy deliveries to end users.


2021 ◽  
Vol 13 (12) ◽  
pp. 6708
Author(s):  
Hamza Mubarak ◽  
Nurulafiqah Nadzirah Mansor ◽  
Hazlie Mokhlis ◽  
Mahazani Mohamad ◽  
Hasmaini Mohamad ◽  
...  

Demand for continuous and reliable power supply has significantly increased, especially in this Industrial Revolution 4.0 era. In this regard, adequate planning of electrical power systems considering persistent load growth, increased integration of distributed generators (DGs), optimal system operation during N-1 contingencies, and compliance to the existing system constraints are paramount. However, these issues need to be parallelly addressed for optimum distribution system planning. Consequently, the planning optimization problem would become more complex due to the various technical and operational constraints as well as the enormous search space. To address these considerations, this paper proposes a strategy to obtain one optimal solution for the distribution system expansion planning by considering N-1 system contingencies for all branches and DG optimal sizing and placement as well as fluctuations in the load profiles. In this work, a hybrid firefly algorithm and particle swarm optimization (FA-PSO) was proposed to determine the optimal solution for the expansion planning problem. The validity of the proposed method was tested on IEEE 33- and 69-bus systems. The results show that incorporating DGs with optimal sizing and location minimizes the investment and power loss cost for the 33-bus system by 42.18% and 14.63%, respectively, and for the 69-system by 31.53% and 12%, respectively. In addition, comparative studies were done with a different model from the literature to verify the robustness of the proposed method.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shengjun Ren ◽  
Shuai Yang ◽  
Adrian Wonfor ◽  
Ian White ◽  
Richard Penty

AbstractWe present an experimental demonstration of the feasibility of the first 20 + Mb/s Gaussian modulated coherent state continuous variable quantum key distribution system with a locally generated local oscillator at the receiver (LLO-CVQKD). To increase the signal repetition rate, and hence the potential secure key rate, we equip our system with high-performance, wideband devices and design the components to support high repetition rate operation. We have successfully trialed the signal repetition rate as high as 500 MHz. To reduce the system complexity and correct for any phase shift during transmission, reference pulses are interleaved with quantum signals at Alice. Customized monitoring software has been developed, allowing all parameters to be controlled in real-time without any physical setup modification. We introduce a system-level noise model analysis at high bandwidth and propose a new ‘combined-optimization’ technique to optimize system parameters simultaneously to high precision. We use the measured excess noise, to predict that the system is capable of realizing a record 26.9 Mb/s key generation in the asymptotic regime over a 15 km signal mode fibre. We further demonstrate the potential for an even faster implementation.


2021 ◽  
Vol 3 (2) ◽  
pp. 409-423
Author(s):  
Ayman Awad ◽  
Hussein Abdel-Mawgoud ◽  
Salah Kamel ◽  
Abdalla A. Ibrahim ◽  
Francisco Jurado

Distributed generation (DG) is becoming a prominent key spot for research in recent years because it can be utilized in emergency/reserve plans for power systems and power quality improvement issues, besides its drastic impact on the environment as a greenhouse gas (GHG) reducer. For maximizing the benefits from such technology, it is crucial to identify the best size and location for DG that achieves the required goal of installing it. This paper presents an investigation of the optimized allocation of DG in different modes using a proposed hybrid technique, the tunicate swarm algorithm/sine-cosine algorithm (TSA/SCA). This investigation is performed on an IEEE-69 Radial Distribution System (RDS), where the impact of such allocation on the system is evaluated by NEPLAN software.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 737
Author(s):  
Michał Kosmecki ◽  
Robert Rink ◽  
Anna Wakszyńska ◽  
Roberto Ciavarella ◽  
Marialaura Di Somma ◽  
...  

Along with the increasing share of non-synchronous power sources, the inertia of power systems is being reduced, which can give rise to frequency containment problems should an outage of a generator or a power infeed happen. Low system inertia is eventually unavoidable, thus power system operators need to be prepared for this condition. This paper addresses the problem of low inertia in the power system from two different perspectives. At a system level, it proposes an operation planning methodology, which utilises a combination of power flow and dynamic simulation for calculation of existing inertia and, if need be, synthetic inertia (SI) to fulfil the security criterion of adequate rate of change of frequency (RoCoF). On a device level, it introduces a new concept for active power controller, which can be applied virtually to any power source with sufficient response time to create synthetic inertia. The methodology is demonstrated for a 24 h planning period, for which it proves to be effective. The performance of SI controller activated in a battery energy storage system (BESS) is positively validated using a real-time digital simulator (RTDS). Both proposals can effectively contribute to facilitating the operation of low inertia power systems.


Sign in / Sign up

Export Citation Format

Share Document