scholarly journals The Potential of the Reed as a Regenerative Building Material—Characterisation of Its Durability, Physical, and Thermal Performances

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4276
Author(s):  
Raphaele Malheiro ◽  
Adriana Ansolin ◽  
Christiane Guarnier ◽  
Jorge Fernandes ◽  
Maria Teresa Amorim ◽  
...  

Knowing the properties of vernacular materials is crucial to heritage conservation and to develop innovative solutions. Reed, considered to be a carbon-neutral and a carbon dioxide sink material, has been used for centuries for diverse uses. Its high availability and properties made it a popular building material, including in Portuguese vernacular architecture. An experimental investigation was conducted to evaluate the physical performance, thermal performance, and durability of the reed found in Portugal since the characterisation of this material was not found in previous studies. The influence of geometric characteristics and the presence of nodes on these properties were also analysed, and the results showed that they are irrelevant. The studied reeds were found to have an adequate thermal performance to be used as thermal insulation. Their thermal resistance (1.8 m2·°C/W) and thermal conductivity (0.06 W/m·°C) are under the requirements defined by Portuguese regulations on thermal insulation materials. Overall, the physical characteristics (moisture content, density, and retraction) are compatible to its use in the construction. Concerning durability, there was only a trend for mould growth in particular environments. The results provide valuable data to be considered in the development of new construction products based on this natural and renewable material. Additionally, considering the studied samples, the reed found in Portugal has characteristics suitable for use as a building material, especially as a thermal insulation material.

Author(s):  
Raphaele Malheiro ◽  
Adriana Ansolin ◽  
Christiane Guarnier ◽  
Jorge Fernandes ◽  
Lívia Cosentino ◽  
...  

The building sector plays a significant role in reducing global energy use and carbon emissions. In the European Union (EU), the building stock represents 40% of total energy use and in which cooling and heating systems represent over 50%. Portugal is one of the EU countries where the consequences of energy poverty are most evident due to the families' financial inability to adequately climate their homes. The reasons are several, but they are mainly linked to buildings' poor passive thermal performance, resulting from inadequate adaptation to the climatic context and reduced thermal insulation. Thus, it is necessary to develop solutions to increase buildings’ thermal performance and reduce their potential environmental impact, which arises mainly from the significant use of active systems. In this sense, natural building materials are a promising solution, reducing energy use and carbon emissions related to buildings. This research studies the potential use of reed found in Portugal (Arundo donax) as a thermal insulation material. Its physical characterisation and the influence of geometry configuration on its thermal performance are evaluated. Its durability was studied too. Reed stalks were used to carry out the physical and durability tests. A reed board (150 x 150 mm) was built, and its thermal performance was tested in a hotbox. According to the results, the characteristics of reeds found in Portugal make it suitable to be used as a building material. Furthermore, regardless of the configuration studied, the reeds have a satisfactory thermal performance to be used as thermal insulation, under the requirements defined by Portuguese thermal regulation, Re ≥ 0.30 (m2.oC)/W. There is a trend to the mould growth in the reed, but only under favourable conditions. Additionally, considering the abundance of reed throughout the Portuguese territory, this is an eco-friendly and low-cost option that gathers all requirements to be more used in the construction market.


2022 ◽  
Vol 906 ◽  
pp. 99-106
Author(s):  
Siranush Egnatosyan ◽  
David Hakobyan ◽  
Spartak Sargsyan

The use of thermal insulation materials to reduce the heating and cooling demand of the building in order to provide energy efficiency is the main solution. But there is a wide range of these products on the market and, therefore, the choice and application of these materials is a rather difficult task, since many factors must be taken into account, such as environmental safety, cost, durability, climatic conditions, application technology, etc. Basically, comfort microclimate systems are designed based on normative standards, where the thickness of the thermal insulation material is selected depending on the required heat transfer resistance. These values are calculated taking into account climate conditions, that is the duration of the heating period, as well as taking into account sanitary and hygienic requirements. This article discusses the thermal performance of building materials, and also provides a comparative analysis of the use of thermal insulation materials depending on climatic factors and on the system providing comfort microclimate. Based on the calculations by mathematical modeling and optimization, it is advisable to choose the thickness of the thermal insulation, taking into account the capital and operating costs of the comfort microclimate systems. Comparing the optimization data with the normative one, the energy efficiency of the building increases by 50-70% when applying the optimal thickness of the thermal insulation layer, and when the thermal insulation layer is increased, the thermal performance of the enclosing structures has improved by 30%, which contributes to energy saving.


2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Ayoub Gounni ◽  
Mohamed El Wazna ◽  
Mustapha El Alami ◽  
Abdeslam El Bouari ◽  
Omar Cherkaoui ◽  
...  

The potential applicability of a developed recycled textile material, based on acrylic spinning waste, as thermal insulation is conducted. The prepared acrylic spinning waste (AS) is thermo-physically characterized in terms of density, air permeability, and thermal conductivity. The results show that the density and air permeability are 10.583 kg/m3 and 1100 L/m2/s, respectively. In addition, the thermal conductivity is found to be 38.27 mW/(m K). The developed thermal insulator is then tested in a thermally controlled reduced scale cavity. Two walls of the cavity are outfitted with AS at two different locations and compared to the walls without AS. The comparison is made based on the wall surface temperature and heat flux. A reduction in surface temperature is observed in the walls outfitted with AS, compared to wall without AS. Indeed, compared to a control wall, the peak heat fluxes are reduced by 27.23% and 18.67%, respectively, related to the walls with AS at location 1 and location 2. The obtained results show that the AS is a competitive thermal insulation material and can increase the thermal performance of the building walls.


2013 ◽  
Vol 671-674 ◽  
pp. 1791-1795
Author(s):  
Qian Gu ◽  
Sheng Ren ◽  
Yue Wang ◽  
Hao Luo

The thermal performance of a new regenerated glass pumice board as external wall thermal insulation material was analyzed in this paper. Considering the roles of solar radiation and air convection, and selecting Wuhan city as an example of the hot summer and cold winter zones, the temperature field distributions of the external building walls in different orientations in summer and winter seasons were numerically simulated by using the finite element software ANSYS. The thermal performance of regenerated glass pumice exterior wall external insulation system including the heat transfer coefficient and the temperature distribution was evaluated. The simulation results demonstrate the good thermal insulation performance of the regenerated glass pumice as a new kind of external wall materials, and the feasibility of the application of this environmentally friendly material to the wall insulation system in energy conservation building is also promoted.


2012 ◽  
Vol 567 ◽  
pp. 220-223 ◽  
Author(s):  
Shan Xia ◽  
Guang Hui Xia ◽  
Jian Hua Cui ◽  
Wan Yun Yin

Based on the energy saving design standards in hot summer and cold winter zone like Anhui province, a new type of sandwich insulation composite wall panel is researched, Influence on thermal performances of new sandwich insulation composite wall panel,due to in different thermal insulation material, different content of the oblique connection rebar, different thermal insulation layer thickness and different internal and external wall thickness, are analyzed. The results show that, in not take extra insulation measures, this kind of sandwich insulation composite wall panel thermal performance can meet the hot summer and cold winter area energy-saving design standard requirements. Research results and practical engineering contact tightly, It has a comparatively high practical value.


2014 ◽  
Vol 1004-1005 ◽  
pp. 1503-1507 ◽  
Author(s):  
Xi Xi He ◽  
Xing Ming Liang

A new kind of 310mm thick load-bearing thermal insulation block utilizing construction waste as coarse aggregate was developed and produced. Internal thermal bridge is reduced by special design of holes pattern and cut off by mal-posed thermal insulation layer arrangement. By testing heat transfer coefficient of four kinds of masonry walls, different aggregate type, masonry unit type and insulation material which affect thermal performance of masonry were studied. Results show that heat transfer coefficient of walls with recycled aggregates is lower than that with natural aggregates under the same condition. By filling thermal insulation material in block holes, heat transfer coefficient is dramatically lowered. Among four types of masonry walls, heat transfer coefficient of 310mm thick load-bearing block wall with recycled aggregate is the lowest, and its thermal insulation performance is the best.


2011 ◽  
Vol 15 (3) ◽  
pp. 21-27 ◽  
Author(s):  
Jinjing Chen ◽  
Weidong Yu

In this paper, a method of designing flexible multilayer insulation is analyzed and discussed, with focus on reducing the three basic modes of heat transfer (thermal radiation, solid spacer and residual gas conduction). The foundation for designing the new flexible thermal insulation material is provided. The insulation performances of different types (by choosing different reflection shields and spacers) of flexible multilayer insulation materials are obtained through measurements using a KES-F7 Thermal Labo II apparatus. The thermal performance of flexible multilayer insulation materials at different layers are also presented, and the best is about 20∼25 layers. To improve the thermal performance of multilayer insulation materials, treble spacers between double aluminized shields are applied. Aluminized shields with air, meshes, wool fibres, etc. are compared with each other. The aluminized shields with meshes fixed with down can reduce thermal contact, which reduces the radiation heat transfer more fully and can be more steady than the other spacers in the project applications. With the same layers and spacers, the thermal conductivity of crinkled aluminized shields is lower than that of the smooth aluminized shields. The effects of compressive loads on layer density and thermal performance are also investigated.


Sign in / Sign up

Export Citation Format

Share Document