scholarly journals Crude Oil–Brine–Rock Interactions in Tight Chalk Reservoirs: An Experimental Study

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5360
Author(s):  
Samira Mohammadkhani ◽  
Benaiah U. Anabaraonye ◽  
Armin Afrough ◽  
Rasoul Mokhtari ◽  
Karen Louise Feilberg

We present a systematic study of crude oil–brine–rock interactions in tight chalk cores at reservoir conditions. Flooding experiments are performed on outcrops (Stevns Klint) as well as on reservoir core plugs from Dan field, the Ekofisk and Tor formations. These studies are carried out in core plugs with reduced pore volumes, i.e., short core samples and aged with a dynamic ageing method. The method was evaluated by three different oil compositions. A series of synthetic multicomponent brines and designed fluid injection scenarios are investigated; injection flow rates are optimized to ensure that a capillary-dominant regime is maintained. Changes in brine compositions and fluid distribution in the core plugs are characterized using ion chromatography and X-ray computed tomography, respectively. First, we show that polar components in the oil phase play a major role in wettability alteration during ageing; this controls the oil production behavior. We also show that, compared to seawater, both formation water and ten-times-diluted seawater are better candidates for enhanced oil recovery in the Dan field. Finally, we show that the modified flow zone indicator, a measure of rock quality, is likely the main variable responsible for the higher oil recoveries observed in Tor core samples.

Author(s):  
Narendra Kumar ◽  
Saif Ali ◽  
Amit Kumar ◽  
Ajay Mandal

Mobilization of crude oil from the subsurface porous media by emulsion injection is one of the Chemical Enhanced Oil Recovery (C-EOR) techniques. However, deterioration of emulsion by phase separation under harsh reservoir conditions like high salinity, acidic or alkaline nature and high temperature pose a challenge for the emulsion to be a successful EOR agent. Present study aims at formulation of Oil-in-Water (O/W) emulsion stabilized by Sodium Dodecyl Sulfate (SDS) using the optimum values of independent variables – salinity, pH and temperature. The influence of above parameters on the physiochemical properties of the emulsion such as average droplet size, zeta (ζ) potential, conductivity and rheological properties were investigated to optimize the properties. The influence of complex interactions of independent variables on emulsion characteristics were premeditated by experimental model obtained by Taguchi Orthogonal Array (TOA) method. Accuracy and significance of the experimental model was verified using Analysis Of Variance (ANOVA). Results indicated that the experimental models were significantly (p < 0.05) fitted with main influence of salinity (making it a critical variable) followed by its interactions with pH and temperature for all the responses studied for the emulsion properties. No significant difference between the predicted and experimental response values of emulsion ensured the adequacy of the experimental model. Formulated optimized emulsion manifested good stability with 2417.73 nm droplet size, −72.52 mV ζ-potential and a stable rheological (viscosity and viscoelastic) behavior at extensive temperature range. Ultralow Interfacial Tension (IFT) value of 2.22E-05 mN/m was obtained at the interface of crude oil and the emulsion. A favorable wettability alteration of rock from intermediate-wet to water-wet was revealed by contact angle measurement and an enhanced emulsification behavior with crude oil by miscibility test. A tertiary recovery of 21.03% of Original Oil In Place (OOIP) was obtained on sandstone core by optimized emulsion injection. Therefore, performance assessment of optimized emulsion under reservoir conditions confirms its capability as an effective oil-displacing agent.


2010 ◽  
Vol 50 (2) ◽  
pp. 735

The average primary oil recovery worldwide is around 35% of the original oil in place (OOIP). Various enhanced oil recovery (EOR) approaches are generally required to recover the remaining OOIP. Apart from the reservoir properties, the capillary pressure that governs fluid distribution and displacement behavior in the reservoir is also affected by the interfacial tension and wettability. Both IFT and wettability are considered to be key effective factors that affect EOR. This study investigated the effect of reservoir brine compositions on the interfacial tension (IFT) between synthetic formation brines and an Australian crude oil with pressures and temperatures up to 4000 psi and 140 °F, respectively. A series of measurements on the density, viscosity and IFT have been conducted. The brines, with total dissolved solids ranging from 3,820 to 38,200 ppm, consist of a diverse range of ions including sodium, lithium, magnesium, calcium, bromide, chloride, sulfate, bicarbonate and carbonate. The experimental results indicate that with all the synthetic brines investigated, the IFT declines with increasing temperature and pressure. Furthermore, it was observed that the IFT reduction with temperature was dependent on the pH values of the brine. Bicarbonate, carbonate, sulfate, and magnesium ions significantly decreased the IFT by up to 40% through either lowering the free surface energy or increasing the surface area. Coreflooding experiments using low salinity water have yielded an incremental EOR of 5.4% OOIP, suggesting that wettability alteration caused by the change of ion balance in the residual water may be responsible for the observed EOR.


2021 ◽  
Author(s):  
Rukaun Chai ◽  
Yuetian Liu ◽  
Qianjun Liu ◽  
Xuan He ◽  
Pingtian Fan

Abstract Unconventional reservoir plays an increasingly important role in the world energy system, but its recovery is always quite low. Therefore, the economic and effective enhanced oil recovery (EOR) technology is urgently required. Moreover, with the aggravation of greenhouse effect, carbon neutrality has become the human consensus. How to sequestrate CO2 more economically and effectively has aroused wide concerns. Carbon Capture, Utilization and Storage (CCUS)-EOR is a win-win technology, which can not only enhance oil recovery but also increase CO2 sequestration efficiency. However, current CCUS-EOR technologies usually face serious gas channeling which finally result in the poor performance on both EOR and CCUS. This study introduced CO2 electrochemical conversion into CCUS-EOR, which successively combines CO2 electrochemical reduction and crude oil electrocatalytic cracking both achieves EOR and CCUS. In this study, multiscale experiments were conducted to study the effect and mechanism of CO2 electrochemical reduction for CCUS-EOR. Firstly, the catalyst and catalytic electrode were synthetized and then were characterized by using scanning electron microscope (SEM) & energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). Then, electrolysis experiment & liquid-state nuclear magnetic resonance (1H NMR) experiments were implemented to study the mechanism of CO2 electrochemical reduction. And electrolysis experiment & gas chromatography (GC) & viscosity & density experiments were used to investigate the mechanism of crude oil electrocatalytic cracking. Finally, contact angle and coreflooding experiments were respectively conducted to study the effect of the proposed technology on wettability and CCUS-EOR. SEM & EDS & XPS results confirmed that the high pure SnO2 nanoparticles with the hierarchical, porous structure, and the large surface area were synthetized. Electrolysis & 1H NMR experiment showed that CO2 has converted into formate with the catalysis of SnO2 nanoparticles. Electrolysis & GC & Density & Viscosity experiments indicated that the crude oil was electrocatalytically cracked into the light components (&lt;C20) from the heavy components (C21∼C37). As voltage increases from 2.0V to 7.0V, the intensity of CO2 electrocchemical reduction and crude oil electrocatalytic cracking enhances to maximum at 3.5V (i.e., formate concentration reaches 6.45mmol/L and carbon peak decreases from C17 to C15) and then weakens. Contact angle results indicated that CO2 electrochemical reduction and crude oil electocatalytic cracking work jointly to promote wettability alteration. Thereof, CO2 electrochemical reduction effect is dominant. Coreflooding results indicated that CO2 electrochemical reduction technology has great potential on EOR and CCUS. With the SnO2 catalytic electrode at optimal voltage (3.5V), the additional recovery reaches 9.2% and CO2 sequestration efficiency is as high as 72.07%. This paper introduced CO2 electrochemical conversion into CCUS-EOR, which successfully combines CO2 electrochemical reduction and crude oil electrocatalytic cracking into one technology. It shows great potential on CCUS-EOR and more studies are required to reveal its in-depth mechanisms.


SPE Journal ◽  
2018 ◽  
Vol 23 (03) ◽  
pp. 803-818 ◽  
Author(s):  
Mehrnoosh Moradi Bidhendi ◽  
Griselda Garcia-Olvera ◽  
Brendon Morin ◽  
John S. Oakey ◽  
Vladimir Alvarado

Summary Injection of water with a designed chemistry has been proposed as a novel enhanced-oil-recovery (EOR) method, commonly referred to as low-salinity (LS) or smart waterflooding, among other labels. The multiple names encompass a family of EOR methods that rely on modifying injection-water chemistry to increase oil recovery. Despite successful laboratory experiments and field trials, underlying EOR mechanisms remain controversial and poorly understood. At present, the vast majority of the proposed mechanisms rely on rock/fluid interactions. In this work, we propose an alternative fluid/fluid interaction mechanism (i.e., an increase in crude-oil/water interfacial viscoelasticity upon injection of designed brine as a suppressor of oil trapping by snap-off). A crude oil from Wyoming was selected for its known interfacial responsiveness to water chemistry. Brines were prepared with analytic-grade salts to test the effect of specific anions and cations. The brines’ ionic strengths were modified by dilution with deionized water to the desired salinity. A battery of experiments was performed to show a link between dynamic interfacial viscoelasticity and recovery. Experiments include double-wall ring interfacial rheometry, direct visualization on microfluidic devices, and coreflooding experiments in Berea sandstone cores. Interfacial rheological results show that interfacial viscoelasticity generally increases as brine salinity is decreased, regardless of which cations and anions are present in brine. However, the rate of elasticity buildup and the plateau value depend on specific ions available in solution. Snap-off analysis in a microfluidic device, consisting of a flow-focusing geometry, demonstrates that increased viscoelasticity suppresses interfacial pinch-off, and sustains a more continuous oil phase. This effect was examined in coreflooding experiments with sodium sulfate brines. Corefloods were designed to limit wettability alteration by maintaining a low temperature (25°C) and short aging times. Geochemical analysis provided information on in-situ water chemistry. Oil-recovery and pressure responses were shown to directly correlate with interfacial elasticity [i.e., recovery factor (RF) is consistently greater the larger the induced interfacial viscoelasticity for the system examined in this paper]. Our results demonstrate that a largely overlooked interfacial effect of engineered waterflooding can serve as an alternative and more complete explanation of LS or engineered waterflooding recovery. This new mechanism offers a direction to design water chemistry for optimized waterflooding recovery in engineered water-chemistry processes, and opens a new route to design EOR methods.


1980 ◽  
Vol 20 (04) ◽  
pp. 281-292 ◽  
Author(s):  
George C. Bernard ◽  
L.W. Holm ◽  
Craig P. Harvey

Abstract This paper presents results from a study designed to improve effectiveness of CO2 flooding by reducing CO2 mobility. In the course of reaching this objective we (1) screened surfactants for their ability to generate an effective and stable emulsion with CO2 under reservoir conditions, (2) determined the concentration range over which surfactants were effective, (3) examined chemical stability of the surfactants at reservoir conditions, (4) determined the extent to which emulsifying action alters gas and liquid mobilities in carbonate and sandstone cores, (5) determined that surfactant can enhance the production of residual oil from watered-out production of residual oil from watered-out carbonate cores by CO2, and (6) showed that the permeability reduction caused by surfactant can be permeability reduction caused by surfactant can be dissipated.At reservoir conditions required for miscible displacement, carbon dioxide exists in its critical state as a very dense fluid whose viscosity is about oneeighth that of crude oil. Generally, this unfavorable viscosity and mobility ratio produces inefficient oil displacement. This study shows that surfactant reduces CO2 mobility and should improve oil displacement by CO2, presumably by reducing flow through the most permeable zones, thus increasing areal and vertical sweep efficiencies.All three classes of surfactants (anionic, cationic, and nonionic) were found to be stable under conditions encountered during a CO2 flood in limestone formation; however, only a few surfactants had proper adsorption and emulsifying properties. proper adsorption and emulsifying properties. Surfactant generated foams or emulsions with CO2 at reservoir conditions (1,000 to 3,000 psi and 135 degrees F) dramatically reduced CO2 flow through sandstone and carbonate cores. Surfactant reduced the amount of CO2 used to recover a given volume of oil, especially from watered-out cores. The mechanism of tertiary oil production from linear cores appears to be limited to CO2 extraction. Approximately the same oil recovery was obtained either by continuous CO2 injection after a surfactant slug or by alternate slugs of CO2 and surfactant solution. It was found that oil recovery efficiency increased when surfactant was used with CO2 and that efficiency increased with flooding pressure.One anionic surfactant was found to be superior for this purpose. This surfactant emulsified CO2 well, was least adsorbed on carbonate rocks, and greatly reduced CO2 mobility in linear cores at concentrations of 0.1 to 1 %.The study indicates that effectiveness of CO2 miscible flooding can be increased by alternate injection of CO2 and aqueous surfactant slugs into the reservoir. Introduction The basic principles of CO2 flooding have been studied for the past 25 years by many investigators. Numerous laboratory studies have demonstrated that CO2, at elevated pressures, can recover oil unrecoverable by conventional methods and that super-critical CO2 develops multicontact miscibility with many crude oils, with a very efficient oil displacement, approaching 100% of the contacted oil. Generally, oil recoveries with CO2 have been much higher in the laboratory than in the field because field conditions are more severe for all oil recovery processes.A principal problem in CO2 flooding is the low viscosity of CO2 compared with that of crude oil. At reservoir conditions, CO2 viscosity is often 10 to 50 times lower than oil viscosity. At these unfavorable viscosity (mobility) ratios, CO2 has a great potential to channel through the oil. potential to channel through the oil. SPEJ P. 281


SPE Journal ◽  
2012 ◽  
Vol 17 (04) ◽  
pp. 1207-1220 ◽  
Author(s):  
Robert F. Li ◽  
George J. Hirasaki ◽  
Clarence A. Miller ◽  
Shehadeh K. Masalmeh

Summary In a layered, 2D heterogeneous sandpack with a 19:1 permeability contrast that was preferentially oil-wet, the recovery by waterflood was only 49.1% of original oil in place (OOIP) because of injected water flowing through the high-permeability zone, leaving the low-permeability zone unswept. To enhance oil recovery, an anionic surfactant blend (NI) was injected that altered the wettability and lowered the interfacial tension (IFT). Once IFT was reduced to ultralow values, the adverse effect of capillarity retaining oil was eliminated. Gravity-driven vertical countercurrent flow then exchanged fluids between high- and low-permeability zones during a 42-day system shut-in. Cumulative recovery after a subsequent foam flood was 94.6% OOIP, even though foam strength was weak. Recovery with chemical flood (incremental recovered oil/waterflood remaining oil) was 89.4%. An alternative method is to apply foam mobility control as a robust viscous-force-dominant process with no initial surfactant injection and shut-in. The light crude oil studied in this paper was extremely detrimental to foam generation. However, the addition of lauryl betaine to NI (NIB) at a weight ratio of 1:2 (NI:lauryl betaine) made the new blend a good foaming agent with and without the presence of the crude oil. NIB by itself as an IFT-reducing and foaming agent is shown to be effective in various secondary and tertiary alkaline/surfactant/foam (ASF) processes in water-wet 1D homogeneous sandpacks and in an oil-wet heterogeneous layered system with a 34:1 permeability ratio.


2021 ◽  
Vol 11 (4) ◽  
pp. 1925-1941
Author(s):  
M. Sadegh Rajabi ◽  
Rasoul Moradi ◽  
Masoud Mehrizadeh

AbstractThe wettability preference of carbonate reservoirs is neutral-wet or oil-wet as the prevailing of hydrocarbon reserves that affects approximately half of the total production of hydrocarbons of the world. Therefore, due to surface wettability of carbonate rocks the notable fraction of oil is held inside their pores in comparison with sandstones. Since shifting the wettability preference toward water-wet system is of great interest, numerous components were used for this purpose. In this experimental research, the wettability alteration of dolomite surface by interacting with a novel nano-surfactant–alkaline fluid has been investigated in order to diminish its adhesion to crude oil droplets. The solutions were prepared by homogenous mixing of nanosilica particles with cetyl trimethyl ammonium bromide and sodium carbonate, respectively, as a cationic surfactant and alkaline agent. The maximum wettability alteration from oil-wet to water system was obtained by employing a mixture of nanoparticles in association with surfactant–alkaline. Then, the fluids were employed in core-surface from detached and attached forms to compare their interfacial effects on saturated thin sections by crude oil and to measure the wettability. In addition, the interfacial tension (IFT) between solutions and crude oil was investigated and the maximum IFT reduction was obtained from nano-surfactant. Finally, all chemical solutions were flooded to the dolomite plugs separately after water flooding in order to evaluate the maximum oil recovery factor acquired by nano-surfactant.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4633 ◽  
Author(s):  
Oscar E. Medina ◽  
Yira Hurtado ◽  
Cristina Caro-Velez ◽  
Farid B. Cortés ◽  
Masoud Riazi ◽  
...  

This study aims to evaluate a high-performance nanocatalyst for upgrading of extra-heavy crude oil recovery and at the same time evaluate the capacity of foams generated with a nanofluid to improve the sweeping efficiency through a continuous steam injection process at reservoir conditions. CeO2±δ nanoparticles functionalized with mass fractions of 0.89% and 1.1% of NiO and PdO, respectively, were employed to assist the technology and achieve the oil upgrading. In addition, silica nanoparticles grafted with a mass fraction of 12% polyethylene glycol were used as an additive to improve the stability of an alpha-olefin sulphonate-based foam. The nanofluid formulation for the in situ upgrading process was carried out through thermogravimetric analysis and measurements of zeta potential during eight days to find the best concentration of nanoparticles and surfactant, respectively. The displacement test was carried out in different stages, including, (i) basic characterization, (ii) steam injection in the absence of nanofluids, (iii) steam injection after soaking with nanofluid for in situ upgrading, (iv) N2 injection, and (v) steam injection after foaming nanofluid. Increase in the oil recovery of 8.8%, 3%, and 5.5% are obtained for the technology assisted by the nanocatalyst-based nanofluid, after the nitrogen injection, and subsequent to the thermal foam injection, respectively. Analytical methods showed that the oil viscosity was reduced 79%, 77%, and 31%, in each case. Regarding the asphaltene content, with the presence of the nanocatalyst, it decreased from 28.7% up to 12.9%. Also, the American Petroleum Institute (API) gravity values increased by up to 47%. It was observed that the crude oil produced after the foam injection was of higher quality than the crude oil without treatment, indicating that the thermal foam leads to a better swept of the porous medium containing upgraded oil.


Sign in / Sign up

Export Citation Format

Share Document