WETTABILITY ALTERATION AND IMPROVED CRUDE OIL RECOVERY WITH ACETONE

1994 ◽  
Vol 12 (4) ◽  
pp. 649-661 ◽  
Author(s):  
Anil Bhardwaj ◽  
Stanley Hartland
2021 ◽  
Author(s):  
Rukaun Chai ◽  
Yuetian Liu ◽  
Qianjun Liu ◽  
Xuan He ◽  
Pingtian Fan

Abstract Unconventional reservoir plays an increasingly important role in the world energy system, but its recovery is always quite low. Therefore, the economic and effective enhanced oil recovery (EOR) technology is urgently required. Moreover, with the aggravation of greenhouse effect, carbon neutrality has become the human consensus. How to sequestrate CO2 more economically and effectively has aroused wide concerns. Carbon Capture, Utilization and Storage (CCUS)-EOR is a win-win technology, which can not only enhance oil recovery but also increase CO2 sequestration efficiency. However, current CCUS-EOR technologies usually face serious gas channeling which finally result in the poor performance on both EOR and CCUS. This study introduced CO2 electrochemical conversion into CCUS-EOR, which successively combines CO2 electrochemical reduction and crude oil electrocatalytic cracking both achieves EOR and CCUS. In this study, multiscale experiments were conducted to study the effect and mechanism of CO2 electrochemical reduction for CCUS-EOR. Firstly, the catalyst and catalytic electrode were synthetized and then were characterized by using scanning electron microscope (SEM) & energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). Then, electrolysis experiment & liquid-state nuclear magnetic resonance (1H NMR) experiments were implemented to study the mechanism of CO2 electrochemical reduction. And electrolysis experiment & gas chromatography (GC) & viscosity & density experiments were used to investigate the mechanism of crude oil electrocatalytic cracking. Finally, contact angle and coreflooding experiments were respectively conducted to study the effect of the proposed technology on wettability and CCUS-EOR. SEM & EDS & XPS results confirmed that the high pure SnO2 nanoparticles with the hierarchical, porous structure, and the large surface area were synthetized. Electrolysis & 1H NMR experiment showed that CO2 has converted into formate with the catalysis of SnO2 nanoparticles. Electrolysis & GC & Density & Viscosity experiments indicated that the crude oil was electrocatalytically cracked into the light components (<C20) from the heavy components (C21∼C37). As voltage increases from 2.0V to 7.0V, the intensity of CO2 electrocchemical reduction and crude oil electrocatalytic cracking enhances to maximum at 3.5V (i.e., formate concentration reaches 6.45mmol/L and carbon peak decreases from C17 to C15) and then weakens. Contact angle results indicated that CO2 electrochemical reduction and crude oil electocatalytic cracking work jointly to promote wettability alteration. Thereof, CO2 electrochemical reduction effect is dominant. Coreflooding results indicated that CO2 electrochemical reduction technology has great potential on EOR and CCUS. With the SnO2 catalytic electrode at optimal voltage (3.5V), the additional recovery reaches 9.2% and CO2 sequestration efficiency is as high as 72.07%. This paper introduced CO2 electrochemical conversion into CCUS-EOR, which successfully combines CO2 electrochemical reduction and crude oil electrocatalytic cracking into one technology. It shows great potential on CCUS-EOR and more studies are required to reveal its in-depth mechanisms.


SPE Journal ◽  
2018 ◽  
Vol 23 (03) ◽  
pp. 803-818 ◽  
Author(s):  
Mehrnoosh Moradi Bidhendi ◽  
Griselda Garcia-Olvera ◽  
Brendon Morin ◽  
John S. Oakey ◽  
Vladimir Alvarado

Summary Injection of water with a designed chemistry has been proposed as a novel enhanced-oil-recovery (EOR) method, commonly referred to as low-salinity (LS) or smart waterflooding, among other labels. The multiple names encompass a family of EOR methods that rely on modifying injection-water chemistry to increase oil recovery. Despite successful laboratory experiments and field trials, underlying EOR mechanisms remain controversial and poorly understood. At present, the vast majority of the proposed mechanisms rely on rock/fluid interactions. In this work, we propose an alternative fluid/fluid interaction mechanism (i.e., an increase in crude-oil/water interfacial viscoelasticity upon injection of designed brine as a suppressor of oil trapping by snap-off). A crude oil from Wyoming was selected for its known interfacial responsiveness to water chemistry. Brines were prepared with analytic-grade salts to test the effect of specific anions and cations. The brines’ ionic strengths were modified by dilution with deionized water to the desired salinity. A battery of experiments was performed to show a link between dynamic interfacial viscoelasticity and recovery. Experiments include double-wall ring interfacial rheometry, direct visualization on microfluidic devices, and coreflooding experiments in Berea sandstone cores. Interfacial rheological results show that interfacial viscoelasticity generally increases as brine salinity is decreased, regardless of which cations and anions are present in brine. However, the rate of elasticity buildup and the plateau value depend on specific ions available in solution. Snap-off analysis in a microfluidic device, consisting of a flow-focusing geometry, demonstrates that increased viscoelasticity suppresses interfacial pinch-off, and sustains a more continuous oil phase. This effect was examined in coreflooding experiments with sodium sulfate brines. Corefloods were designed to limit wettability alteration by maintaining a low temperature (25°C) and short aging times. Geochemical analysis provided information on in-situ water chemistry. Oil-recovery and pressure responses were shown to directly correlate with interfacial elasticity [i.e., recovery factor (RF) is consistently greater the larger the induced interfacial viscoelasticity for the system examined in this paper]. Our results demonstrate that a largely overlooked interfacial effect of engineered waterflooding can serve as an alternative and more complete explanation of LS or engineered waterflooding recovery. This new mechanism offers a direction to design water chemistry for optimized waterflooding recovery in engineered water-chemistry processes, and opens a new route to design EOR methods.


Author(s):  
Narendra Kumar ◽  
Saif Ali ◽  
Amit Kumar ◽  
Ajay Mandal

Mobilization of crude oil from the subsurface porous media by emulsion injection is one of the Chemical Enhanced Oil Recovery (C-EOR) techniques. However, deterioration of emulsion by phase separation under harsh reservoir conditions like high salinity, acidic or alkaline nature and high temperature pose a challenge for the emulsion to be a successful EOR agent. Present study aims at formulation of Oil-in-Water (O/W) emulsion stabilized by Sodium Dodecyl Sulfate (SDS) using the optimum values of independent variables – salinity, pH and temperature. The influence of above parameters on the physiochemical properties of the emulsion such as average droplet size, zeta (ζ) potential, conductivity and rheological properties were investigated to optimize the properties. The influence of complex interactions of independent variables on emulsion characteristics were premeditated by experimental model obtained by Taguchi Orthogonal Array (TOA) method. Accuracy and significance of the experimental model was verified using Analysis Of Variance (ANOVA). Results indicated that the experimental models were significantly (p < 0.05) fitted with main influence of salinity (making it a critical variable) followed by its interactions with pH and temperature for all the responses studied for the emulsion properties. No significant difference between the predicted and experimental response values of emulsion ensured the adequacy of the experimental model. Formulated optimized emulsion manifested good stability with 2417.73 nm droplet size, −72.52 mV ζ-potential and a stable rheological (viscosity and viscoelastic) behavior at extensive temperature range. Ultralow Interfacial Tension (IFT) value of 2.22E-05 mN/m was obtained at the interface of crude oil and the emulsion. A favorable wettability alteration of rock from intermediate-wet to water-wet was revealed by contact angle measurement and an enhanced emulsification behavior with crude oil by miscibility test. A tertiary recovery of 21.03% of Original Oil In Place (OOIP) was obtained on sandstone core by optimized emulsion injection. Therefore, performance assessment of optimized emulsion under reservoir conditions confirms its capability as an effective oil-displacing agent.


SPE Journal ◽  
2012 ◽  
Vol 17 (04) ◽  
pp. 1207-1220 ◽  
Author(s):  
Robert F. Li ◽  
George J. Hirasaki ◽  
Clarence A. Miller ◽  
Shehadeh K. Masalmeh

Summary In a layered, 2D heterogeneous sandpack with a 19:1 permeability contrast that was preferentially oil-wet, the recovery by waterflood was only 49.1% of original oil in place (OOIP) because of injected water flowing through the high-permeability zone, leaving the low-permeability zone unswept. To enhance oil recovery, an anionic surfactant blend (NI) was injected that altered the wettability and lowered the interfacial tension (IFT). Once IFT was reduced to ultralow values, the adverse effect of capillarity retaining oil was eliminated. Gravity-driven vertical countercurrent flow then exchanged fluids between high- and low-permeability zones during a 42-day system shut-in. Cumulative recovery after a subsequent foam flood was 94.6% OOIP, even though foam strength was weak. Recovery with chemical flood (incremental recovered oil/waterflood remaining oil) was 89.4%. An alternative method is to apply foam mobility control as a robust viscous-force-dominant process with no initial surfactant injection and shut-in. The light crude oil studied in this paper was extremely detrimental to foam generation. However, the addition of lauryl betaine to NI (NIB) at a weight ratio of 1:2 (NI:lauryl betaine) made the new blend a good foaming agent with and without the presence of the crude oil. NIB by itself as an IFT-reducing and foaming agent is shown to be effective in various secondary and tertiary alkaline/surfactant/foam (ASF) processes in water-wet 1D homogeneous sandpacks and in an oil-wet heterogeneous layered system with a 34:1 permeability ratio.


2021 ◽  
Vol 11 (4) ◽  
pp. 1925-1941
Author(s):  
M. Sadegh Rajabi ◽  
Rasoul Moradi ◽  
Masoud Mehrizadeh

AbstractThe wettability preference of carbonate reservoirs is neutral-wet or oil-wet as the prevailing of hydrocarbon reserves that affects approximately half of the total production of hydrocarbons of the world. Therefore, due to surface wettability of carbonate rocks the notable fraction of oil is held inside their pores in comparison with sandstones. Since shifting the wettability preference toward water-wet system is of great interest, numerous components were used for this purpose. In this experimental research, the wettability alteration of dolomite surface by interacting with a novel nano-surfactant–alkaline fluid has been investigated in order to diminish its adhesion to crude oil droplets. The solutions were prepared by homogenous mixing of nanosilica particles with cetyl trimethyl ammonium bromide and sodium carbonate, respectively, as a cationic surfactant and alkaline agent. The maximum wettability alteration from oil-wet to water system was obtained by employing a mixture of nanoparticles in association with surfactant–alkaline. Then, the fluids were employed in core-surface from detached and attached forms to compare their interfacial effects on saturated thin sections by crude oil and to measure the wettability. In addition, the interfacial tension (IFT) between solutions and crude oil was investigated and the maximum IFT reduction was obtained from nano-surfactant. Finally, all chemical solutions were flooded to the dolomite plugs separately after water flooding in order to evaluate the maximum oil recovery factor acquired by nano-surfactant.


2015 ◽  
Vol 1120-1121 ◽  
pp. 369-377 ◽  
Author(s):  
Jia Feng Jin ◽  
Yan Ling Wang ◽  
Fei Liu

Wettability is one of most important characteristics for governing the flow and distribution of reservoir fluids in the porous media,the wetting and spreading behavior of liquids on the solid surfaces changes if the wettability of solid surface is altered. Recent studies show the spreading behavior of liquids on solid surface can be significantly improved after nanofluid treatment. In order to investigate the influence of wettability alternation on enhancing oil recovery after nanofluid treatment,flushing oil experiment and contact angle measurement were conducted in the laboratory. The first experiment involved flushing crude oil with the nanofluid and conventional surfactants, respectively. In the second case, the contact angles of oil phase in nanofluid (conventional surfactant solutions)-crude oil-slide systems were measured after treating 36 hours. The results indicated that nanofluid can produce a better flushing efficiency compared with that of conventional surfactant, and the contact angles of oil phase increased from 33° to 118° after nanofluid treatment in nanofluid/crude-oil/slide system. The mechanism of enhanced oil recovery of nanofluid is mainly wettability alternation.


SPE Journal ◽  
2020 ◽  
Vol 25 (04) ◽  
pp. 1884-1894
Author(s):  
Zuoli Li ◽  
Subhash Ayirala ◽  
Rubia Mariath ◽  
Abdulkareem AlSofi ◽  
Zhenghe Xu ◽  
...  

Summary Polymer enhances the volumetric sweep efficiency through the increased viscosity of injection water and subsequently results in enhanced oil recovery. Most of the reported experimental studies focused on only evaluating polymer viscosifying characteristics and their associated significance for achieving adequate mobility control in porous media. The microscale effects of polymer on wettability alteration in carbonates are rarely studied. In this experimental investigation, the wettability of carbonates in the presence of polymer was measured using contact angle tests. In addition, the adhesion force between carbonate and crude oil droplets in polymer solutions was determined using a custom-designed integrated thin-film drainage apparatus equipped with a bimorph sensor. The liberation kinetics of crude oil from carbonate surfaces were also measured by an optical microscope-based liberation cell to understand the wettability alteration effects on oil recovery. All the experiments, except the adhesion force, which was measured at room temperature due to the restriction of bimorph sensor, were conducted at both ambient and elevated temperatures (70°C) using a sulfonated polyacrylamide polymer (SPAM) (at 500 and 700 ppm) in high-salinity injection water. Deionized (DI) water was used as a baseline to provide a representative comparison with the high-salinity brine. The contact angles of crude oil droplets on a carbonate surface were highest in DI water and decreased in brine. The addition of polymer decreased the contact angle further, with higher concentrations of polymer resulting in a lower contact angle. The adhesion force between crude oil and carbonate showed good agreement with contact angle data, and the oil adhesion was smallest on the carbonate surface in the presence of polymer. The crude oil liberation from the carbonate surface by flooding with brine and polymer was found to be more efficient at elevated temperature than at ambient temperature, consistent with lower contact angles measured in these aqueous solutions at high temperature. The equilibrium oil liberation degree with polymer solutions increased by more than two times when the temperature was increased from 23 to 70°C. The higher liberation degree obtained with polymer solutions also correlated well with the lowest adhesion force measured between crude oil and carbonate in the presence of polymer. These consistent results obtained from different experimental techniques indicated that the oil recovery improvements observed with polymer in dynamic liberation tests are not only related to the increase in water viscosity but are also due to favorable changes in wettability as inferred from both contact angle and adhesion force measurements. This experimental study, for the first time, characterized the microscale effects of polymer on wettability alteration and crude oil liberation in carbonates. The favorable effect of polymer on wettability alteration in carbonates revealed from this study has not been reported in the literature, and it can become a novel addition to the existing knowledge.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5360
Author(s):  
Samira Mohammadkhani ◽  
Benaiah U. Anabaraonye ◽  
Armin Afrough ◽  
Rasoul Mokhtari ◽  
Karen Louise Feilberg

We present a systematic study of crude oil–brine–rock interactions in tight chalk cores at reservoir conditions. Flooding experiments are performed on outcrops (Stevns Klint) as well as on reservoir core plugs from Dan field, the Ekofisk and Tor formations. These studies are carried out in core plugs with reduced pore volumes, i.e., short core samples and aged with a dynamic ageing method. The method was evaluated by three different oil compositions. A series of synthetic multicomponent brines and designed fluid injection scenarios are investigated; injection flow rates are optimized to ensure that a capillary-dominant regime is maintained. Changes in brine compositions and fluid distribution in the core plugs are characterized using ion chromatography and X-ray computed tomography, respectively. First, we show that polar components in the oil phase play a major role in wettability alteration during ageing; this controls the oil production behavior. We also show that, compared to seawater, both formation water and ten-times-diluted seawater are better candidates for enhanced oil recovery in the Dan field. Finally, we show that the modified flow zone indicator, a measure of rock quality, is likely the main variable responsible for the higher oil recoveries observed in Tor core samples.


Author(s):  
Mohammad Fattahi Mehraban ◽  
Shahab Ayatollahi ◽  
Mohammad Sharifi

Although wettability alteration has been shown to be the main control mechanism of Low Salinity and Smart Water (LS-SmW) injection, our understanding of the phenomena resulting in wettability changes still remains incomplete. In this study, more attention is given to direct measurement of wettability through contact angle measurement at ambient and elevated temperatures (28 °C and 90 °C) during LS-SmW injection to identify trends in wettability alteration. Zeta potential measurement is utilized as an indirect technique for wettability assessment in rock/brine and oil/brine interfaces in order to validate the contact angle measurements. The results presented here bring a new understanding to the effect of temperature and different ions on the wettability state of dolomite particles during an enhanced oil recovery process. Our observations show that increasing temperature from 28 °C to 90 °C reduces the contact angle of oil droplets from 140 to 41 degrees when Seawater (SW) is injected. Besides, changing crude oil from crude-A (low asphaltene content) to crude-B (high asphaltene content) contributes to more negative surface charges at the oil/brine interface. The results suggest that the sulphate ion (SO42-) is the most effective ion for altering dolomite surface properties, leading to less oil wetness. Our study also shows that wettability alteration at ambient and elevated temperatures during LS-SmW injection can be explained by Electrical Double Layer (EDL) theory.


SPE Journal ◽  
2008 ◽  
Vol 13 (02) ◽  
pp. 137-145 ◽  
Author(s):  
Kamlesh Kumar ◽  
Eric K. Dao ◽  
Kishore K. Mohanty

Summary Waterflooding recovers little oil from fractured carbonate reservoirs, if they are oil-wet or mixed-wet. Surfactant-aided gravity drainage has the potential to achieve significant oil recovery by wettability alteration and interfacial tension (IFT) reduction. The goal of this work is to investigate the mechanisms of wettability alteration by crude oil components and surfactants. Contact angles are measured on mineral plates treated with crude oils, crude oil components, and surfactants. Mineral surfaces are also studied by atomic force microscopy (AFM). Surfactant solution imbibition into parallel plates filled with a crude oil is investigated. Wettability of the plates is studied before and after imbibition. Results show that wettability is controlled by the adsorption of asphaltenes. Anionic surfactants can remove these adsorbed components from the mineral surface and induce preferential water wettability. Anionic surfactants studied can imbibe water into initially oil-wet parallel-plate assemblies faster than the cationic surfactant studied. Introduction Waterflooding is an effective method to improve oil recovery from reservoirs. For fractured reservoirs, waterflooding is effective only when water imbibes into the matrix spontaneously. If the matrix is oil-wet, the injected water displaces the oil only from the fractures. Water does not imbibe into the oil-wet matrix because of negative capillary pressure, resulting in very low oil recovery. Thus there is a need of tertiary or enhanced oil recovery techniques like surfactant flooding (Bragg et al. 1982; Kalpakci et al. 1990; Krumrine et al. 1982a; Krumrine et al. 1982b; Falls et al. 1992) to maximize production from such reservoirs. These techniques were developed in 1960s through 1980s for sandstone reservoirs, but were not widely applied because of low oil prices. Austad et al. (Austad and Milter 1997; Standnes and Austad 2000a; Standnes and Austad 2000b; Standnes and Austad 2003c) have recently demonstrated that surfactant flooding in chalk cores can change the wettability from oil-wet to water-wet conditions, thus leading to higher oil recovery (~70 % as compared to 5% when using pure brine). In 2003 (Standnes and Austad 2003a; Standnes and Austad 2003b; Strand et al. 2003), they identified cheap commercial cationic surfactants, C10NH2 and bioderivatives from the coconut palm termed Arquad and Dodigen (priced at US$ 3 per kg). These surfactants could recover 50 to 90% of oil in laboratory experiments. However, the cost involved is still high because of the required high concentration (~1 wt%) and thus there is a need to evaluate other surfactants. The advantage of using cationic surfactants for carbonates is that they have the same charge as the carbonate surfaces and thus have low adsorption. Nonionic surfactants and anionic surfactants have been tested by Chen et al. (2001) in both laboratory experiments and field pilots. Computed tomography scans revealed that surfactant imbibition was caused by countercurrent flow in the beginning and gravity-driven flow during the later stages. The basic idea behind these techniques is to alter wettability (from oil-wet to water-wet) and lower interfacial tension. Hirasaki and Zhang (2004) have studied different ethoxy and propoxy sulfates to achieve very low interfacial tension and alter wettability from oil-wet to intermediate-wet in laboratory experiments. The presence of Na2CO3 reduces the adsorption of anionic surfactant by lowering the zeta potential of calcite surfaces, and thus dilute anionic surfactant/alkali solution flooding seems to be very promising in recovering oil from oil-wet fractured carbonate reservoirs. It is very important to understand the mechanism of wettability alteration to design effective surfactant treatments and identify the components of oil responsible for making a surface oil-wet. It is postulated that oil is often produced in source rocks and then migrates into originally water-wet reservoirs. Some of the ionic/polar components of crude oil, mostly asphaltenes and resins, collect at the water/oil interface (Freer et al. 2003) and adsorb onto the mineral surface, thus rendering the surface oil-wet. In this work, we try to understand the nature of the adsorbed components by AFM. Recently, AFM has been used extensively to get the force-distance measurements between a tip and a surface. These force measurements can be used to calculate the surface energies using the Johnson-Kendall-Roberts (JKR), the Derjaguin-Muller-Toporov (DMT), and like theories (van der Vegte and Hadziioannou 1997; Schneider et al. 2003). AFM is also used extensively for imaging surfaces. It can be used in the contact mode for hard surfaces and in the tapping mode for soft surfaces. It can be used to image dry surfaces or wet surfaces; tapping mode in water is a relatively new technique. AFM images have been used to confirm the deposition of oil components on mineral surfaces (Buckley and Lord 2003; Toulhoat et al. 1994). In this work, crude-oil-treated mica surface is probed using atomic force microscopy before and after surfactant treatment to study the effects of surfactant. AFM measurements are correlated with contact-angle measurements. We also study surfactant solution imbibition into an initially oil-wet parallel plate assembly to relate wettability to oil recovery. Our experimental methodology is described in the next section, the results are discussed in the following section, and the conclusions are summarized in the last section.


Sign in / Sign up

Export Citation Format

Share Document