scholarly journals Simulation of Optimal Driving for Minimization of Fuel Consumption or NOx Emissions in a Diesel Vehicle

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5513
Author(s):  
Pablo Fernández-Yáñez ◽  
José A. Soriano ◽  
Carmen Mata ◽  
Octavio Armas ◽  
Benjamín Pla ◽  
...  

Significant reduction in fuel consumption and NOx emissions can be achieved just by changing the driving along the road. In this paper, dynamic programming is employed to find two different driving profiles optimized for fuel consumption and NOx creation minimization in a diesel vehicle. Results, show that the fuel reduction driving cycle leads to fuel savings of 4% compared with the average consumption with arbitrary driving. The NOx reduction driving profile improves the emissions of arbitrary driving by a 34.5%. NOx oriented driving profile improves the emissions of the fuel-oriented cycle by a 38% at the expense of a fuel consumption penalty of 10%. This result points out the difficulty of a simultaneous NOx and fuel consumption reduction, stressing the efforts to be done in this field during the following years. Strategies followed and conclusions drawn from this paper are relevant concerning vehicle autonomy integration.

Author(s):  
Oscar F. Delgado ◽  
Nigel N. Clark ◽  
Gregory J. Thompson

Portable emissions measurement systems (PEMS) are used to perform in-use measurements for emissions inventory and regulatory applications. PEMS data represent real world conditions more accurately than chassis dynamometer or engine dynamometer testing, arguably being the most realistic method of determining exhaust emissions over a certain driving route. However, measured emissions and fuel consumption depend strongly on both the route followed and the traffic situation that the vehicle encounters. A tool for translation of emissions and fuel consumption between diverse types of vehicle activity is required. The purpose of this paper is to assess the possibility of using route-averaged properties (kinematic parameters) for translation of fuel consumption and NOx emissions for a set of eighteen heavy-duty vehicles operating over up to eight different driving routes. A linear model developed for heavy-duty vehicle chassis dynamometer data modeling has been extended to in-use heavy-duty vehicle data. Two approaches were implemented; the first approach mimicked the prior chassis dynamometer work by incorporating average vehicle speed and average positive acceleration and the second approach incorporated road grade in a characteristic power parameter. The end result is a simple method which was shown to be accurate for estimation of fuel consumption (within 5% relative error) and NOx emissions (within 12% relative error) for over-the-road vehicles over “unseen” roads or traffic situations, without the need to perform additional over-the-road tests.


Author(s):  
Ernst Radloff ◽  
Charles Gautier

The Transportation Development Centre of Transport Canada, in collaboration with Environment Canada’s Emissions Research and Measurement Division, conducted a series of emissions tests onboard the Oceanex RoRo vessel MV Cabot operating between Montre´al, Quebec, and St. John’s, Newfoundland. The primary objectives were to verify emissions inventories and demonstrate the feasibility of installing affordable emissions reduction technology on marine vessels as well as compliance with future regulatory emissions limits. The tests also provided an opportunity for Canada to share information on emissions program and technology developments with U.S. regulatory authorities. This may lead to developing joint emissions reduction initiatives for existing marine vessels. This paper describes the field-testing of a water injection system (WIS) to reduce oxides of nitrogen (NOx) emissions from ocean-going vessels. Tests were conducted on a semi-dedicated basis during voyage and under steady-state conditions. The emissions measurements were taken in accordance with ISO 8178-4-E3 protocol and using both marine diesel oil and intermediate fuel oil, which enabled the evaluation of the impact of different fuel type and quality on emissions. An initial series of tests was carried out on the MV Cabot in March 2004, followed by a second series of tests on the same vessel in March 2005. These tests demonstrated the effectiveness of a low-cost WIS for reducing NOx emissions in marine diesel engines. They also showed that water injection reduces NOx at the expense of an increase in both particulate matter and carbon monoxide when using intermediate fuel oil. NOx reductions varied between 10 and 35 percent, and were most effective at high water injection ratios above 50 percent engine load. The test results showed no negative impact of the WIS on fuel consumption or engine operation and performance. This paper compares the results obtained from the consecutive series of tests in terms of the effectiveness of NOx reduction, and analyses the results in the context of other full-scale test results obtained from emissions control system vendors and engine suppliers. It also investigates the theoretical process and technology of water injection through charge air fumigation, and both direct water and fuel/water emulsion injection. In addition, the effects of water injection on engine emissions, operation and maintenance, and the optimization of water injection from a knowledge-based perspective are discussed. Further testing and development of the WIS are required to realize optimal emissions reduction potential and to determine the impact of water injection on fuel consumption, and engine operational performance as well as the impact of fuel quality on emissions.


2021 ◽  
Vol 42 (2) ◽  
Author(s):  
Stelian Alexandru Borz ◽  
Marina Viorela Marcu ◽  
Maria Francesca Cataldo

Forwarding technology is well established in use around the world but, at the same time, forwarders are expensive machines that require a good planning to ensure the sustainability of operations. In addition, forwarder market is characterized by a limited pool of customers, therefore innovation attempts may be limited compared to other product development industries. Since the steps towards a full automation of operations are still at their beginning, improvements of forwarder machines may rest in developing and integrating components that could contribute to an increased effectiveness. To respond to such challenges, the Forwarder2020 project developed innovative components that were integrated in a number of forwarder prototypes based on a market pull approach that resulted in a flexible adaptation to customer requirements and work environments. Since one of the typical work environments was that of low access forests, some components (i.e. suspended cabin and transmission system) were engineered to enable faster and safer operations and to economize fuel. As a common validation step is that of bringing field evidence on the performance improvement, this study evaluated the operational speed, productivity and fuel consumption of a forwarder prototype in conditions of a steep-terrain low-access forest. The main findings were very promising as the prototype was able to operate at significantly increased speeds and the fuel savings were evident. For an average forwarding distance of about 1.5 km, net productivity and efficiency rates were estimated at 14.4 m3/h and 0.07 h/m3, respectively. They were related to the availability of wood, and further improvement of such figures is possible by a better organization of tree felling and processing. Operational speed was affected by the condition of skid roads used for forwarding, which were harsh. During the transportation tasks developed on roads typical for forwarding, the machine was able to sustain average speeds estimated at 8 km/h. As a matter of fact, in such tasks, the dominant operational speed (almost in 100% of the cases) was higher than 5 km/h irrespective of the road condition. Hourly fuel consumption was estimated based on the time in which the engine was working and it amounted to 17.1 l/h. More importantly, by considering the forwarded payload in terms of volume and mass, the unit fuel consumption was estimated to be 1.25 l/m3 and 1.47 l/t, respectively. These results bring evidence on the performance improvement by modular innovation. In fact, such solutions could answer the challenges related to the sustainability of forest operations in low access forests.


Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 180 ◽  
Author(s):  
Barouch Giechaskiel ◽  
Ricardo Suarez-Bertoa ◽  
Tero Lahde ◽  
Michael Clairotte ◽  
Massimo Carriero ◽  
...  

Nitrogen oxides (NOx) emissions from diesel vehicles are a serious environmental concern. Prior to the introduction of on-road tests at type approval, vehicle on-road NOx emissions were found many times higher than the applicable limits. Retrofitting an existing vehicle is a short/mid-term solution. We evaluated a NOx reduction retrofit system installed on a Euro 6b diesel passenger car both in the laboratory and on the road. The retrofit consisted of an under-floor SCR (selective catalytic reduction) for NOx catalyst in combination with a solid ammonia-based dosing system as the NOx reductant. The retrofit reduced NOx emissions from 25% (50 mg/km) to 82% (725 mg/km) both in the laboratory and on the road. The minimum reduction was achieved at cold start cycles and the maximum at hot start cycles. The retrofit had small effect on CO2 (fuel consumption). No ammonia emissions were detected and the N2O increase was negligible at cold start cycles, but up to 18 mg/km at hot start cycles. The results showed that the retrofit technology could be beneficial even for high emitting Euro 6b diesel vehicles.


2019 ◽  
Author(s):  
Joachim Demuynck ◽  
Cecile Favre ◽  
Dirk Bosteels ◽  
Frank Bunar ◽  
Joachim Spitta ◽  
...  

2020 ◽  
Vol 6 (2) ◽  
pp. 27-31
Author(s):  
A. I. Huseynov ◽  

The impact of roads unevenness, i.e. presence of upward and downward motion zones in the road on auto transport fuel consumption is studied. The task of calculation of optimum interrelation of motion speed and acceleration at the uneven roads in sense of reaching of minimum consumed fuel and minimum emissions on environment is formulated and solved. In the study, an analysis of known works on the topic of research was carried out, which showed that the unevenness of the road, i.e. the presence of descents and ascents on the route is one of the main reasons that led to an increase in fuel consumption by vehicles on the route, while the problem of calculating the optimal functional relationship between the speed and acceleration has not yet been solved. Formulated and solved the problem of finding the optimal relationship between the speed and acceleration of vehicles in terms of achieving the minimum fuel consumption on an uneven track. Practical recommendations have been developed for the implementation of the proposed optimal driving regime on uneven terrain containing descents and ascents.


Author(s):  
Benjamin H. Gully ◽  
Michael E. Webber ◽  
Carolyn C. Seepersad ◽  
Richard C. Thompson

Fuel costs, which are the single most important driver of marginal costs for marine transportation, account for almost 50% of total voyage costs for typical configurations and operational modes. Hence, there has developed a desire among operators and manufacturers of all classes of ships to embrace innovative ways to reduce the demand for fuels. The luxury yacht segment presents an attractive market for investigating and assessing the impacts of fuel-saving technologies because the large ships benefit from the fuel savings, have more flexible performance requirements and have owners who are more likely to embrace the required premiums for experimental technologies. This report analyzes the effects of fitting such a yacht with a sail system, a solar panel system, and an energy storage system (ESS). Integrating a sail system to reduce propulsion loads provides significant benefit with respect to fuel economy. In contrast, the total amount of power provided by the solar panel system provides very little benefit, even when extensive deck paneling is used and panels are fit to rigid wing sails. Utilizing an ESS in the same manner as with a terrestrial hybrid vehicle to manipulate load distribution provides insignificant benefit for fuel consumption reduction, but seems to present opportunities for emissions reduction, which has played an increasingly important role in marine environmental concerns.


2013 ◽  
Vol 60 (2) ◽  
pp. 185-197 ◽  
Author(s):  
Paweł Sulikowski ◽  
Ryszard Maronski

The problem of the optimal driving technique during the fuel economy competition is reconsidered. The vehicle is regarded as a particle moving on a trace with a variable slope angle. The fuel consumption is minimized as the vehicle covers the given distance in a given time. It is assumed that the run consists of two recurrent phases: acceleration with a full available engine power and coasting down with the engine turned off. The most fuel-efficient technique for shifting gears during acceleration is found. The decision variables are: the vehicle velocities at which the gears should be shifted, on the one hand, and the vehicle velocities when the engine should be turned on and off, on the other hand. For the data of students’ vehicle representing the Faculty of Power and Aeronautical Engineering it has been found that such driving strategy is more effective in comparison with a constant speed strategy with the engine partly throttled, as well as a strategy resulting from optimal control theory when the engine is still active.


2021 ◽  
Vol 9 (2) ◽  
pp. 123
Author(s):  
Sergejus Lebedevas ◽  
Lukas Norkevičius ◽  
Peilin Zhou

Decarbonization of ship power plants and reduction of harmful emissions has become a priority in the technological development of maritime transport, including ships operating in seaports. Engines fueled by diesel without using secondary emission reduction technologies cannot meet MARPOL 73/78 Tier III regulations. The MEPC.203 (62) EEDI directive of the IMO also stipulates a standard for CO2 emissions. This study presents the results of research on ecological parameters when a CAT 3516C diesel engine is replaced by a dual-fuel (diesel-liquefied natural gas) powered Wartsila 9L20DF engine on an existing seaport tugboat. CO2, SO2 and NOx emission reductions were estimated using data from the actual engine load cycle, the fuel consumption of the KLASCO-3 tugboat, and engine-prototype experimental data. Emission analysis was performed to verify the efficiency of the dual-fuel engine in reducing CO2, SO2 and NOx emissions of seaport tugboats. The study found that replacing a diesel engine with a dual-fuel-powered engine led to a reduction in annual emissions of 10% for CO2, 91% for SO2, and 65% for NOx. Based on today’s fuel price market data an economic impact assessment was conducted based on the estimated annual fuel consumption of the existing KLASCO-3 seaport tugboat when a diesel-powered engine is replaced by a dual-fuel (diesel-natural gas)-powered engine. The study showed that a 33% fuel costs savings can be achieved each year. Based on the approved methodology, an ecological impact assessment was conducted for the entire fleet of tugboats operating in the Baltic Sea ports if the fuel type was changed from diesel to natural gas. The results of the assessment showed that replacing diesel fuel with natural gas achieved 78% environmental impact in terms of NOx emissions according to MARPOL 73/78 Tier III regulations. The research concludes that new-generation engines on the market powered by environmentally friendly fuels such as LNG can modernise a large number of existing seaport tugboats, significantly reducing their emissions in ECA regions such as the Baltic Sea.


Author(s):  
Charbel R Ghanem ◽  
Elio N Gereige ◽  
Wissam S Bou Nader ◽  
Charbel J Mansour

There have been many studies conducted to replace the conventional internal combustion engine (ICE) with a more efficient engine, due to increasing regulations over vehicles’ emissions. Throughout the years, several external combustion engines were considered as alternatives to these traditional ICEs for their intrinsic benefits, among which are Stirling machines. These were formerly utilized in conventional powertrains; however, they were not implemented in hybrid vehicles. The purpose of this study is to investigate the possibility of implementing a Stirling engine in a series hybrid electric vehicle (SHEV) to substitute the ICE. Exergy analysis was conducted on a mathematical model, which was developed based on a real simple Stirling, to pinpoint the room for improvements. Then, based on this analysis, other configurations were retrieved to reduce exergy losses. Consequently, a Stirling-SHEV was modeled, to be integrated as auxiliary power unit (APU). Hereafter, through an exergo-technological detailed selection, the best configuration was found to be the Regenerative Reheat two stages serial Stirling (RRe-n2-S), offering the best efficiency and power combination. Then, this configuration was compared with the Regenerative Stirling (R-S) and the ICE in terms of fuel consumption, in the developed SHEV on the WLTC. This was performed using an Energy Management Strategy (EMS) consisting of a bi-level optimization technique, combining the Non-dominated Sorting Genetic Algorithm (NSGA) with the Dynamic Programming (DP). This arrangement is used to diminish the fuel consumption, while considering the reduction of the APU’s ON/OFF switching times, avoiding technical issues. Results prioritized the RRe-n2-S presenting 12.1% fuel savings compared to the ICE and 14.1% savings compared to the R-S.


Sign in / Sign up

Export Citation Format

Share Document