scholarly journals Non-Contact High Voltage Measurement in the Online Partial Discharge Monitoring System

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5777
Author(s):  
Krzysztof Walczak ◽  
Wojciech Sikorski

The article presents an innovative system for non-contact high voltage (HV) measurement, which extends the measurement capabilities of a portable partial discharges (PD) monitoring system intended for diagnostics of power transformers. The proposed method and the developed measuring system are based on the use of a capacitive probe, thanks to which the high voltage measurement is safe (galvanic separation from the objects at ahigh potential). It is also flexible because the voltage ratio of this system can be configured in a wide range by changing the probe’s position. The proposed solution makes the portable PD monitoring system fully autonomous and independent of the substation systems and devices. The article presents both the concept of the non-contact HV measurement system and its practical implementation. The procedure for determining the voltage ratio and measurement uncertainty, which is at an acceptable level of 1–5% in laboratory conditions, was discussed in detail. In addition, the article discusses the digital filtering and wavelet de-noising methods implemented in the software of the monitoring system, which makes it possible to measure the voltage in the presence of strong electromagnetic disturbances occurring at the substation. Finally, the results of field tests carried out on a 250 MVA power transformer are presented, which confirmed the high accuracy of the HV measurement using a capacitive probe and the advantages of this technique.

Vestnik IGEU ◽  
2019 ◽  
pp. 58-66
Author(s):  
I.Yu. Dolgikh ◽  
M.G. Markov

A wide range of technological advantages of induction crucible melting furnaces makes their use in various sectors of metallurgical production relevant. However, hard operation conditions of the refractory lining of such furnaces makes it necessary to constantly monitor its condition, with the aim to extend the crucible life and prevent emergencies. Moreover, traditional methods based on the use of a bottom electrode and indication of current leakage to earth do not provide a continuous display of the lining destruction degree and make it possible to register only a critical level that requires an emergency shutdown and emptying of the furnace. This circumstance makes it necessary to develop and implement specialized electrical systems with a monitoring and control system that ensures the determination and visualization of the lining wear level and, if necessary, makes an emergency shutdown of the equipment from the power source. The developed complex is based on a microprocessor system that continuously measures the temperature at the control points at the boundary between the bottom and crucible base layers and compares the obtained values with the settings, which are determined previously on a two-dimensional axisymmetric model of the designed furnace by solving the stationary heat conduction equation at various levels of lining failure. We have developed the structure, scheme, and program for a microprocessor-based monitoring and emergency shutdown system of an induction furnace, as well as a mathematical model of the control object, which allows determining the temperature settings. The reliability of the results is confirmed by the applicability of the models to real objects, and is verified by debugging the microprocessor part in the MPLab-Sim and Proteus programs. The obtained results can be used in the practical implementation of the monitoring system and emergency shutdown of induction melting furnaces, which allows increasing the safety of their operation and extending the lining life due to timely repair.


2012 ◽  
Vol 518 ◽  
pp. 261-270 ◽  
Author(s):  
Lech Murawski ◽  
Wieslaw Ostachowicz ◽  
Szymon Opoka ◽  
Magdalena Mieloszyk ◽  
Katarzyna Majewska

The paper presents structural health monitoring (SHM) system, dedicated to marine structures. The considered system is based on the fibre optic technique with Fibre Bragg Grating (FBG) sensors. The aim of this research is recognition of possible practical applications of the fibre optic techniques in selected elements of marine structures. SHM and damage detection techniques have a great importance (economical, human safety and environment protection) in the wide range of marine structures, especially for ships and offshore platforms. In the paper monitoring system of the Horyzont II and Dar Młodzieży ships and offshore oil platform is presented. Practical implementation of safety system based on optical sensors meets several difficulties. There has been installed the FBG system and its measurement results have been compared with classical techniques, e.g. piezoelectric accelerometers. The investigations have been performed for undamaged and damaged structure. Different types of failures have been modelled and tested. Damage detection ability has been specifying on the base of static and dynamic structural characteristics.


Author(s):  
W. E. King

A side-entry type, helium-temperature specimen stage that has the capability of in-situ electrical-resistivity measurements has been designed and developed for use in the AEI-EM7 1200-kV electron microscope at Argonne National Laboratory. The electrical-resistivity measurements complement the high-voltage electron microscope (HVEM) to yield a unique opportunity to investigate defect production in metals by electron irradiation over a wide range of defect concentrations.A flow cryostat that uses helium gas as a coolant is employed to attain and maintain any specified temperature between 10 and 300 K. The helium gas coolant eliminates the vibrations that arise from boiling liquid helium and the temperature instabilities due to alternating heat-transfer mechanisms in the two-phase temperature regime (4.215 K). Figure 1 shows a schematic view of the liquid/gaseous helium transfer system. A liquid-gas mixture can be used for fast cooldown. The cold tip of the transfer tube is inserted coincident with the tilt axis of the specimen stage, and the end of the coolant flow tube is positioned without contact within the heat exchanger of the copper specimen block (Fig. 2).


2019 ◽  
pp. 40-46 ◽  
Author(s):  
V.V. Savchenko ◽  
A.V. Savchenko

We consider the task of automated quality control of sound recordings containing voice samples of individuals. It is shown that in this task the most acute is the small sample size. In order to overcome this problem, we propose the novel method of acoustic measurements based on relative stability of the pitch frequency within a voice sample of short duration. An example of its practical implementation using aninter-periodic accumulation of a speech signal is considered. An experimental study with specially developed software provides statistical estimates of the effectiveness of the proposed method in noisy environments. It is shown that this method rejects the audio recording as unsuitable for a voice biometric identification with a probability of 0,95 or more for a signal to noise ratio below 15 dB. The obtained results are intended for use in the development of new and modifying existing systems of collecting and automated quality control of biometric personal data. The article is intended for a wide range of specialists in the field of acoustic measurements and digital processing of speech signals, as well as for practitioners who organize the work of authorized organizations in preparing for registration samples of biometric personal data.


2020 ◽  
pp. 38-44
Author(s):  
A. V. Polyakov ◽  
M. A. Ksenofontov

Optical technologies for measuring electrical quantities attract great attention due to their unique properties and significant advantages over other technologies used in high-voltage electric power industry: the use of optical fibers ensures high stability of measuring equipment to electromagnetic interference and galvanic isolation of high-voltage sensors; external electromagnetic fields do not influence the data transmitted from optical sensors via fiber-optic communication lines; problems associated with ground loops are eliminated, there are no side electromagnetic radiation and crosstalk between the channels. The structure and operation principle of a quasi-distributed fiber-optic high-voltage monitoring system is presented. The sensitive element is a combination of a piezo-ceramic tube with an optical fiber wound around it. The device uses reverse transverse piezoelectric effect. The measurement principle is based on recording the change in the recirculation frequency under the applied voltage influence. When the measuring sections are arranged in ascending order of the measured effective voltages relative to the receiving-transmitting unit, a relative resolution of 0,3–0,45 % is achieved for the PZT-5H and 0,8–1,2 % for the PZT-4 in the voltage range 20–150 kV.


Weed Science ◽  
1979 ◽  
Vol 27 (5) ◽  
pp. 497-501 ◽  
Author(s):  
C. D. Boyette ◽  
G. E. Templeton ◽  
R. J. Smith

An indigenous, host-specific, pathogenic fungus that parasitizes winged waterprimrose [Jussiaea decurrens(Walt.) DC.] is endemic in the rice growing region of Arkansas. The fungus was isolated and identified asColletotrichum gloeosporioides(Penz.) Sacc. f.sp. jussiaeae(CGJ). It is highly specific for parasitism of winged waterprimrose and not parasitic on creeping waterprimrose (J. repensL. var.glabrescensKtze.), rice (Oryza sativaL.), soybeans [Glycine max(L.) Merr.], cotton (Gossypium hirsutumL.), or 4 other crops and 13 other weeds. The fungus was physiologically distinct from C.gloeosporioides(Penz.) Sacc. f. sp.aeschynomene(CGA), an endemic anthracnose pathogen of northern jointvetch[Aeschynomene virginica(L.) B.S.P.], as indicated by cross inoculations of both weeds. Culture in the laboratory and inoculation of winged waterprimrose in greenhouse, growth chamber and field experiments indicated that the pathogen was stable, specific, and virulent in a wide range of environments. The pathogen yielded large quantities of spores in liquid culture. It is suitable for control of winged waterprimrose. Winged waterprimrose and northern jointvetch were controlled in greenhouse and field tests by application of spore mixtures of CGJ and CGA at concentrations of 1 to 2 million spores/ml of each fungus in 94 L/ha of water; the fungi did not damage rice or nontarget crops.


2008 ◽  
Vol 580-582 ◽  
pp. 557-560 ◽  
Author(s):  
J.G. Han ◽  
Kyong Ho Chang ◽  
Gab Chul Jang ◽  
K.K. Hong ◽  
Sam Deok Cho ◽  
...  

Recently, in the loading tests for steel members, the deformation value is measured by calculating a distance of both cross-heads. This measuring method encounters a test error due to various environmental factors, such as initial slip, etc.. Especially, in the case of welded members, the non-uniform deformation behavior in welded joints is observed because of the effect of welding residual stress and weld metal. This is mainly responsible for a test error and a loss of the reliability for used test instruments. Therefore, to improve the accuracy and the applicability of measuring system, it is necessary to employ a visual monitoring system which can accurately measure the local and overall deformation of welded members. In this paper, to accurately measure a deformation of welded members, a visual monitoring system (VMS) was developed by using three-dimensional digital photogrammetry. The VMS was applied to the loading tests of a welded member. The accuracy and the applicability of VMS was verified by comparing to the deformation value measured by a test instrument (MTS-810). The characteristics of the behavior near a welded joint were investigated by using VMS.


Sign in / Sign up

Export Citation Format

Share Document