scholarly journals Storage and Upgrading of Biogas by Physicochemical Purification in a Sudano-Sahelian Context

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5855
Author(s):  
Djomdi ◽  
Leonel Junior Mintsop Nguela ◽  
Hamadou Bakari ◽  
Hamadou Fadimatou ◽  
Gwendoline Christophe ◽  
...  

The global energy trends are currently dominated by a massive use of fossil non-renewable energy sources which are progressively depleting. In this way, the production of second-generation biogas production from organic wastes by the dark fermentation process offers, therefore, an attractive solution to diversify the present energy mix. The development of biogas production units has led to an increase in the quantity of biomethane, but it contains impurities. A biomethane purification and storage system was developed in this work to improve the quality of this biofuel. Solutions were first developed to capture carbon dioxide, hydrogen sulfide, water, and volatile organic compounds found in the initial biogas. These solutions were based on a system of purification made up of water absorption reactions and iron oxide, activated charcoal, and steel wool adsorption. Thus, the biomethane obtained after purification has been stored in an inflatable balloon before being compressed into a refrigerant bottle of R134a. The treatment system was used to release a biogas with 95 % biomethane and a law heating value (LHV) of 54 MJ/kg after purification. It also emerges that purification of 2 m3 of biogas requires 0.15 m3 of water at 20oC to produce 1.4 m3 of biomethane. This biomethane can meet an energy demand of 1624 Wh or 0.2 m3 of daily biomethane requirements. The system as a whole can allow customers with a biodigester to produce their own energy (cooking or electric) while reducing the production of green-house gases in the atmosphere.

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6772
Author(s):  
Arkadiusz Dyjakon ◽  
Tomasz Noszczyk ◽  
Agata Mostek

Renewable energy sources and their part in the global energy mix are beneficial to energy diversification and environment protection. However, raw biomass is characterized by low heating value, hydrophilic properties, various mechanical durability, and the logistic challenges related to transportation and storage. One frequently used process of combined biomass valorization is torrefaction and pelletization, which increase the heating value, homogeneity, and hydrophobicity of the fuel. However, industrial clients need fuel characterized by favorable grindability, whereas, the individual clients (householders) need fuel with high mechanical durability. Due to the different expectations of final customers regarding biomass fuel properties, it is necessary to investigate the influence of the torrefaction on the mechanical durability of the pellets. In this paper, five various types of pellets and their torreficates (obtained at a temperature of 200 and 300 °C) were examined. Then the mechanical durability index DU and the grindability of the untreated and torrefied pellets were determined. The results indicated that the mechanical durability of untorrefied pellets is significantly greater than torrefied pellets. Interestingly, no significant differences in mechanical durability between torrefied pellets at 200 and 300 °C were observed, For sunflower husk pellets, the DU index amounted to 95.28 ± 0.72 (untorrefied), 47.22% ± 0.28% (torrefied at 200 °C), and 46.34% ± 0.72% (torrefied at 300 °C). Considering the grindability, as the treatment temperature increased the energy demand for grindability decreased. For example, the grindability of pine tree pellets was 15.96 ± 3.07 Wh·kg−1 (untreated), 1.86 ± 0.31 Wh·kg−1 (torrefied at 200 °C), and 0.99 ± 0.17 Wh·kg−1 (torrefied at 300 °C). The highest difference between raw and torrefied pellets was determined for beetroot pomace pellet: 36.31 ± 2.06 Wh·kg−1 (untreated), 3.85 ± 0.47 Wh·kg−1 (torrefied at 200 °C), and 1.03 ± 0.12 Wh·kg−1 (torrefied at 300 °C).


2020 ◽  
Author(s):  
Jacob Joseph Lamb

Biogas has become one of the most attractive pathways among the renewable energy sources essential to address major modern challenges such as climate change and energy depletion in recent years. Biogas derives from the degradation of organic materials through anaerobic digestion by microorganisms. Such organic materials generally come from waste feedstocks. Therefore, besides being a sustainable replacement for fossil fuels, biogas helps control waste. Agricultural and industrial residues, municipal organic waste and sewage sludge are thus common feedstock sources, including seeds, grains and sugars, lignocellulosic biomass such as crop residues and woody crops, or high carbohydrate algae. Because of its versatility in usage and storage space, biogas plays an significant role in managing potential electricity grids. Through biogas production and utilisation, our society can go deeper into green energy applications. This Chapter will give an introduction the the current energy sector and where biogas can be used as a substitute for decarbonisation of the energy sector.


2021 ◽  
Vol 286 ◽  
pp. 03010
Author(s):  
Anişoara Pӑun ◽  
Gheorghe Stroescu ◽  
Alexandru Zaica ◽  
Samir Yasbeck Khozamy ◽  
Ana Zaica ◽  
...  

The problem of grain storage and storage can be approached from two perspectives: storage and storage of cereals and technical plants within individual agricultural holdings; storage and storage of cereals and technical plants within agricultural associations and companies. At the level of Romania, the storage and storage of cereals at small agricultural producers are deficient in terms of ensuring optimal storage conditions according to standards. These variants include: preservation at low temperatures; preservation by active aeration; self-preservation; chemical preservation; conservation with the help of radiation. In the paper we will approach the conservation by active aeration because it folds better for small agricultural producers. Proper aeration is one of the most important processes in a grain storage system and is essential for maintaining the quality of stored products. Aeration means the movement of a relatively small volume of air through the grain mass in order to control the temperature of the grain and to reduce the risk of product degradation. The two main objectives of aeration are to maintain a uniform temperature in the grain mass and at the same time the temperature must be as low as possible from a practical point of view. The paper will present the results of experiments for storing bulk grain in a metal cell with central aeration system, which is based on a patent. This type of storage system can be used successfully in small agricultural producers.


2022 ◽  
Vol 334 ◽  
pp. 03002
Author(s):  
Maria Alessandra Ancona ◽  
Michele Bianchi ◽  
Lisa Branchini ◽  
Francesco Catena ◽  
Andrea De Pascale ◽  
...  

The integration of renewable energy sources into the electricity system can contribute to the development of a low-carbon economy. However, due to the intermittency and non-programmability of these sources, problems related to the management of local electricity grids may occur. A possible solution or limitation to these issues is given by the electrical storage. In addition, in the next future, domestic micro-grids are expected to play a fundamental role in electric power networks, driving both the academic and industrial research interests in developing highly efficient and reliable conversion and storage technologies. In this study, the behavior of a small-scale hybrid energy system for hydrogen production and storage has been predicted, by means of a developed calculation model, and the operational strategy of the system has been optimized with the aim to maximize the hydrogen production. In addition, with the aim to maximize the overall solar-to-hydrogen chain efficiency, the whole system model has been applied to different operating scenarios, to identify the optimal management strategy to control it.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kehinde Oladoke Olatunji ◽  
Noor A. Ahmed ◽  
Oyetola Ogunkunle

AbstractPopulation increase and industrialization has resulted in high energy demand and consumptions, and presently, fossil fuels are the major source of staple energy, supplying 80% of the entire consumption. This has contributed immensely to the greenhouse gas emission and leading to global warming, and as a result of this, there is a tremendous urgency to investigate and improve fresh and renewable energy sources worldwide. One of such renewable energy sources is biogas that is generated by anaerobic fermentation that uses different wastes such as agricultural residues, animal manure, and other organic wastes. During anaerobic digestion, hydrolysis of substrates is regarded as the most crucial stage in the process of biogas generation. However, this process is not always efficient because of the domineering stableness of substrates to enzymatic or bacteria assaults, but substrates’ pretreatment before biogas production will enhance biogas production. The principal objective of pretreatments is to ease the accessibility of the enzymes to the lignin, cellulose, and hemicellulose which leads to degradation of the substrates. Hence, the use of pretreatment for catalysis of lignocellulose substrates is beneficial for the production of cost-efficient and eco-friendly process. In this review, we discussed different pretreatment technologies of hydrolysis and their restrictions. The review has shown that different pretreatments have varying effects on lignin, cellulose, and hemicellulose degradation and biogas yield of different substrate and the choice of pretreatment technique will devolve on the intending final products of the process.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 109
Author(s):  
Basit Olakunle Alawode ◽  
Umar Taiwo Salman ◽  
Muhammad Khalid

There is a surge in the total energy demand of the world due to the increase in the world’s population and the ever-increasing human dependence on technology. Conventional non-renewable energy sources still contribute a larger amount to the total energy production. Due to their greenhouse gas emissions and environmental pollution, the substitution of these sources with renewable energy sources (RES) is desired. However, RES, such as wind energy, are uncertain, intermittent, and unpredictable. Hence, there is a need to optimize their usage when they are available. This can be carried out through a flexible operation of a microgrid system with the power grid to gradually reduce the contribution of the conventional sources in the power system using energy storage systems (ESS). To integrate the RES in a cost-effective approach, the ESS must be optimally sized and operated within its safe limitations. This study, therefore, presents a flexible method for the optimal sizing and operation of battery ESS (BESS) in a wind-penetrated microgrid system using the butterfly optimization (BO) algorithm. The BO algorithm was utilized for its simple and fast implementation and for its ability to obtain global optimization parameters. In the formulation of the optimization problem, the study considers the depth of discharge and life-cycle of the BESS. Simulation results for three different scenarios were studied, analyzed, and compared. The resulting optimized BESS connected scenario yielded the most cost-effective strategy among all scenarios considered.


2021 ◽  
Vol 12 (1) ◽  
pp. 367
Author(s):  
Andrea Gnisci ◽  
Antonio Fotia ◽  
Lucio Bonaccorsi ◽  
Andrea Donato

Nanostructured metal oxide semiconductors (MOS) are considered proper candidates to develop low cost and real-time resistive sensors able to detect volatile organic compounds (VOCs), e.g., diacetyl. Small quantities of diacetyl are generally produced during the fermentation and storage of many foods and beverages, conferring a typically butter-like aroma. Since high diacetyl concentrations are undesired, its monitoring is fundamental to identify and characterize the quality of products. In this work, a tin oxide sensor (SnO2) is used to detect gaseous diacetyl. The effect of different working atmospheres (air, N2 and CO2), as well as the contemporary presence of ethanol vapors, used to reproduce the typical alcoholic fermentation environment, are evaluated. SnO2 sensor is able to detect diacetyl in all the analyzed conditions, even when an anaerobic environment is considered, showing a detection limit lower than 0.01 mg/L and response/recovery times constantly less than 50 s.


2018 ◽  
Vol 73 ◽  
pp. 07009
Author(s):  
Syafrudin Syafrudin ◽  
Samadikun Budi Prasetyo ◽  
Wardana Irawan Wisnu

Organic solid waste will undergo a decomposition process and produces some gases compounds such as a large enough of Methane (CH4), Carbon Dioxide (CO2) with Oxygen (O2) and N2. The high heating value of CH4 in biogas can make biogas as a good source of renewable energy and environmentally friendly. Biogas calorie efficiency is proportional to the concentration of CH4 in biogas. However, the quantity and quality of biogas that produced in landfill depend on the characteristic and density of domestic solid waste in landfill. The composition of organic and inorganic waste and the density of waste pile will alter the CH4 content. This study focuses on measuring CH4 content of the solid waste with different density while also identifying the composition of disposed solid waste. The result indicates that the CH4 content ranges from 33% to 57.7% with 22.19% to 42.24% of CO2 and approximately 1.21% - 7.92% of O2. The presence of inorganic waste and density level of waste contribute to the decomposition rate and CH4 content.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4308
Author(s):  
Sadaqat Ali ◽  
Zhixue Zheng ◽  
Michel Aillerie ◽  
Jean-Paul Sawicki ◽  
Marie-Cécile Péra ◽  
...  

The fast depletion of fossil fuels and the growing awareness of the need for environmental protection have led us to the energy crisis. Positive development has been achieved since the last decade by the collective effort of scientists. In this regard, renewable energy sources (RES) are being deployed in the power system to meet the energy demand. The microgrid concept (AC, DC) is introduced, in which distributed energy resources (DERs), the energy storage system (ESS) and loads are interconnected. DC microgrids are appreciated due to their high efficiency and reliability performance. Despite its significant growth, the DC microgrid is still relatively novel in terms of grid architecture and control systems. In this context, an energy management system (EMS) is essential for the optimal use of DERs in secure, reliable, and intelligent ways. Therefore, this paper strives to shed light on DC microgrid architecture, control structure, and EMS. With an extensive literature survey on EMSs’ role, different methods and strategies related to microgrid energy management are covered in this article. More attention is centered on the EMS for DC microgrids in terms of size and cost optimization. A very concise analysis of multiple optimization methods and techniques has been presented exclusively for residential applications.


Sign in / Sign up

Export Citation Format

Share Document