scholarly journals Experimental Analysis of Modified DC-P&O Technique with Arm Controller for a Stand-Alone 40 W PV System

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6169
Author(s):  
Ashish Kumar Singhal ◽  
Narendra Singh Beniwal ◽  
Khalid Almutairi ◽  
Joshuva Arockia Dhanraj ◽  
Ali Mostafaeipour ◽  
...  

The world is moving towards the generation of electricity with renewable energy sources (RES) due to the deterioration of the green environment and trying to replace non-renewable energy resources. The real-time results are achieved with the help of an arm controller, having good controller efficiency with the Waijung toolbox, compatible with MATLAB using STM32ST-link utility. In this paper, the authors are focused on areas such as easy to implement controller efficiency, and real-time solutions for modified direct-control perturbation & observation (DC-P&O) technique based on 32- bit ARM Cortex microcontroller (STM32F407VGT6) with embedded programming using Waijung blocksets, which offers very expected outcomes of the problem to make the stand-alone system efficient with fast-tracking. The observation setup is tested with a 40-watt photovoltaic (PV) panel with resistive load for achieving its stability. The designed algorithm enhances the efficiency of the controller by 84.48% for the real-time parameters of the PV panel at maximum power point (MPP) for a 57% duty ratio.

Author(s):  
Kala Rathi ◽  
N. Rathina Prabha

Now-a-days, power generation and utilization became more complicated which further affects the economy of a country. The available non-renewable energy sources that supply the demanded power do not consider environmental challenges like global warming and pollution. This leads to the development of power generation based on Renewable Energy Resources (RES). These RES are connected to the grid through power electronic converters which offer countless power quality issues that must be rectified to deliver a quality power to the end users. The proposed work uses a three phase Voltage Source Inverter (VSI) based Shunt Active Power Filter (SAPF) fed by solar Photo Voltaic (PV) system to eliminate current harmonics at the source side of the grid. The output of the PV system is given to a boost converter along with self–lift single-ended primary-inductor converter (SEPIC) for supplying high voltage gain which is accompanied by a Perturb & Observe Maximum Power Point Tracking (MPPT).The main objective of this paper is to eliminate the current harmonics at the grid side using SAPF. Also, the proposed SAPF is used for exporting the power generated from PV to the grid. The overall system performance is validated with a help of MATLAB/SIMULINK.


2016 ◽  
Vol 2016 ◽  
pp. 1-20 ◽  
Author(s):  
B. Pakkiraiah ◽  
G. Durga Sukumar

Nowadays in order to meet the increase in power demands and to reduce the global warming, renewable energy sources based system is used. Out of the various renewable energy sources, solar energy is the main alternative. But, compared to other sources, the solar panel system converts only 30–40% of solar irradiation into electrical energy. In order to get maximum output from a PV panel system, an extensive research has been underway for long time so as to access the performance of PV system and to investigate the various issues related to the use of solar PV system effectively. This paper therefore presents different types of PV panel systems, maximum power point tracking control algorithms, power electronic converters usage with control aspects, various controllers, filters to reduce harmonic content, and usage of battery system for PV system. Attempts have been made to highlight the current and future issues involved in the development of PV system with improved performance. A list of 185 research publications on this is appended for reference.


Power system planners are forced to consider the alarming rate of environmental pollution and rapiddepletion of fossil fuels andutilize renewable energy resources to mitigate the environmental effects of thermal power stations. Combined Economic Emission Dispatch(CEED)offers an effectivesolution to reducefossil fuel emissions as well ascost.Since 1985, CEED is considered to be a common optimization strategy. Literature contains lot of optimization methods for the strategy.In the recent times, using PV energy has proved to be a feasible and dependable alternative for electricity generation systems based on fossil fuels. In the developing countries, the dependency on fossil fuels has been seen as inevitable. At present,the use of renewable energy sources is rapidly increasing in inconventional power generation systems. The present paper puts forwardan approach of combining PVenergy-based grid integrated PV system with fossil fuel based thermal power plant using evolutionary programmingbased optimization technique.Among the various optimization techniques, the Particle Swarm Optimization (PSO) is considered to be the most suitable technique for the problem is explained in detailed manner.The proposed method is to combine CEED with the PV energy and thereby reduces the use of conventional energy resources.It also permits an effective utilizationof abundantlyavailable PV energy.It is tested on standard IEEE 30 bus system with the real time ratings of proposed PV plant situated in Tamilnadu.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1779
Author(s):  
Syed Rahman ◽  
Irfan Khan ◽  
Khaliqur Rahman ◽  
Sattam Al Otaibi ◽  
Hend I. Alkhammash ◽  
...  

This paper presents a novel, scalable, and modular multiport power electronic topology for the integration of multiple resources. This converter is not only scalable in terms of the integration of multiple renewable energy resources (RES) and storage devices (SDs) but is also scalable in terms of output ports. Multiple dc outputs of a converter are designed to serve as input to the stacking modules (SMs) of the modular multilevel converter (MMC). The proposed multiport converter is bidirectional in nature and superior in terms of functionality in a way that a modular universal converter is responsible for the integration of multiple RES/SDs and regulates multiple dc output ports for SMs of MMC. All input ports can be easily integrated (and controlled), and output ports also can be controlled independently in response to any load variations. An isolated active half-bridge converter with multiple secondaries acts as a central hub for power processing with multiple renewable energy resources that are integrated at the primary side. To verify the proposed converter, a detailed design of the converter-based system is presented along with the proposed control algorithm for managing power on the individual component level. Additionally, different modes of power management (emulating the availability/variability of renewable energy sources (RES)) are exhibited and analyzed here. Finally, detailed simulation results are presented in detail for the validation of the proposed concepts and design process.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2151
Author(s):  
Feras Alasali ◽  
Husam Foudeh ◽  
Esraa Mousa Ali ◽  
Khaled Nusair ◽  
William Holderbaum

More and more households are using renewable energy sources, and this will continue as the world moves towards a clean energy future and new patterns in demands for electricity. This creates significant novel challenges for Distribution Network Operators (DNOs) such as volatile net demand behavior and predicting Low Voltage (LV) demand. There is a lack of understanding of modern LV networks’ demand and renewable energy sources behavior. This article starts with an investigation into the unique characteristics of householder demand behavior in Jordan, connected to Photovoltaics (PV) systems. Previous studies have focused mostly on forecasting LV level demand without considering renewable energy sources, disaggregation demand and the weather conditions at the LV level. In this study, we provide detailed LV demand analysis and a variety of forecasting methods in terms of a probabilistic, new optimization learning algorithm called the Golden Ratio Optimization Method (GROM) for an Artificial Neural Network (ANN) model for rolling and point forecasting. Short-term forecasting models have been designed and developed to generate future scenarios for different disaggregation demand levels from households, small cities, net demands and PV system output. The results show that the volatile behavior of LV networks connected to the PV system creates substantial forecasting challenges. The mean absolute percentage error (MAPE) for the ANN-GROM model improved by 41.2% for household demand forecast compared to the traditional ANN model.


Clean Energy ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 104-123
Author(s):  
Manish Kumar Thukral

Abstract Renewable-energy resources require overwhelming adoption by the common masses for safeguarding the environment from pollution. In this context, the prosumer is an important emerging concept. A prosumer in simple terms is the one who consumes as well as produces electricity and sells it either to the grid or to a neighbour. In the present scenario, peer-to-peer (P2P) energy trading is gaining momentum as a new vista of research that is viewed as a possible way for prosumers to sell energy to neighbours. Enabling P2P energy trading is the only method of making renewable-energy sources popular among the common masses. For making P2P energy trading successful, blockchain technology is sparking considerable interest among researchers. Combined with smart contracts, a blockchain provides secure tamper-proof records of transactions that are recorded in distributed ledgers that are immutable. This paper explores, using a thorough review of recently published research work, how the existing power sector is reshaping in the direction of P2P energy trading with the application of blockchain technology. Various challenges that are being faced by researchers in the implementation of blockchain technology in the energy sector are discussed. Further, this paper presents different start-ups that have emerged in the energy-sector domain that are using blockchain technology. To give insight into the application of blockchain technology in the energy sector, a case of the application of blockchain technology in P2P trading in electrical-vehicle charging is discussed. At the end, some possible areas of research in the application of blockchain technology in the energy sector are discussed.


2021 ◽  
Vol 19 ◽  
pp. 205-210
Author(s):  
Milan Belik ◽  

This project focuses on optimisation of energy accumulation for various types of distributed renewable energy sources. The main goal is to prepare charging – discharging strategy depending on actual power consumption and prediction of consumption and production of utilised renewable energy sources for future period. The simulation is based on real long term data measured on photovoltaic system, wind power station and meteo station between 2004 – 2021. The data from meteo station serve as the input for the simulation and prediction of the future production while the data from PV system and wind turbine are used either as actual production or as a verification of the predicted values. Various parameters are used for trimming of the optimisation process. Influence of the charging strategy, discharging strategy, values and shape of the demand from the grid and prices is described on typical examples of the simulations. The main goal is to prepare and verify the system in real conditions with real load chart and real consumption defined by the model building with integrated renewable energy sources. The system can be later used in general installations on commercial or residential buildings.


Photovoltaic system is growing rapidly in today's world. In the recent trend PV industries are gaining more importance but due to its dependence on several factors the actual power supplied from the PV to the load is not sufficient. Thus in order to make full utilization of PV system effective tracking is very necessary. In this paper an improved detail MPPT technique is demonstrated. The duty cycles obtained from this method are analyzed to get a better duty ratio so that the system can operate at peak power point irrespective of any load condition. The detailed work is carried out in MATLAB for resistive load. Therefore MPPT controller with DC-DC converter is considered to carry out effective load matching and make the PV system operate at MPP point. There are various MPPT methods for PV system using soft computing techniques. The results found in this work shows that the PV standalone system using the improved MPPT technique give better performance and higher efficiency i.e 98.88% in comparison to other existing methods.


2021 ◽  
Vol 5 (3) ◽  
pp. 56-61
Author(s):  
Ahmet Erhan AKAN

The decrease in fossil-based energy sources and increasing environmental problems increase the tendency to renewable energy sources day by day. The potential of renewable energy sources differs according to the region where the energy will be produced. For this reason, it is crucial to conduct a good feasibility study that deals with the selected systems from a technical and economic point of view before making an investment decision on energy conversion systems based on renewable energy sources. In this study, the most suitable equipment and capacities were investigated by examining the techno-economic analysis of a hybrid system created with wind-solar renewable energies for a detached house, which is considered off-grid, in a rural area of Tekirdağ province (40o58.7ı N, 27o30.7ı E). Investigations were carried out using the HOMER Pro (Hybrid Optimization Model for Electric Renewable) program. The wind and solar energy potential of Tekirdağ province were obtained from the NASA renewable energy resources database added to the HOMER Pro program. The daily electricity requirement of the sample house was chosen as 11.27 kWh, and the current peak electrical load was chosen as 2.39 kW. A wind turbine is connected to the AC busbars, solar collectors and battery group connected to the DC busbars, and a converter that converts energy between AC and DC busbars in the energy conversion system. In order to determine the optimum capacities of the system elements, 27486 different simulations were performed by HOMER Pro. The selection of the most suitable system among these was determined according to the lowest net present cost (NPC) value. In addition, the energy production capacities that will occur in the case of different wind speeds were also investigated. Accordingly, the system to be installed with a solar panel with a capacity of 6.25 kW, PV-MPPT with a capacity of 1 kW, 2 wind turbines with a capacity of 1 kW, 8 Lithium-ion batteries with a capacity of 6V-167 Ah, and a converter with a capacity of 2.5 kW has been determined will generate electrical energy of 5433 kWh per year. In addition, it has been determined that 61.8% of this produced energy will be obtained from solar energy and 38.2% from wind energy, and the simple payback period of the investment will be 14 years. It is thought that this study will provide valuable information to researchers and investors.


Sign in / Sign up

Export Citation Format

Share Document