scholarly journals Electric Vehicles Charging Management Using Machine Learning Considering Fast Charging and Vehicle-to-Grid Operation

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6199
Author(s):  
Mostafa Shibl ◽  
Loay Ismail ◽  
Ahmed Massoud

Electric vehicles (EVs) have gained in popularity over the years. The charging of a high number of EVs harms the distribution system. As a result, increased transformer overloads, power losses, and voltage fluctuations may occur. Thus, management of EVs is required to address these challenges. An EV charging management system based on machine learning (ML) is utilized to route EVs to charging stations to minimize the load variance, power losses, voltage fluctuations, and charging cost whilst considering conventional charging, fast charging, and vehicle-to-grid (V2G) technologies. A number of ML algorithms are contrasted in terms of their performances in optimization since ML has the ability to create accurate future decisions based on historical data, which are Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbours (KNN), Long Short-Term Memory (LSTM) and Deep Neural Networks (DNN). The results verify the reliability of the use of LSTM for the management of EVs to ensure high accuracy. The LSTM model successfully minimizes power losses and voltage fluctuations and achieves peak shaving by flattening the load curve. Furthermore, the charging cost is minimized. Additionally, the efficiency of the management system proved to be robust against the uncertainty of the load data that is used as an input to the ML system.

2021 ◽  
Vol 11 (21) ◽  
pp. 10187
Author(s):  
Yonghyeok Ji ◽  
Seongyong Jeong ◽  
Yeongjin Cho ◽  
Howon Seo ◽  
Jaesung Bang ◽  
...  

Transmission mounted electric drive type hybrid electric vehicles (HEVs) engage/disengage an engine clutch when EV↔HEV mode transitions occur. If this engine clutch is not adequately engaged or disengaged, driving power is not transmitted correctly. Therefore, it is required to verify whether engine clutch engagement/disengagement operates normally in the vehicle development process. This paper studied machine learning-based methods for detecting anomalies in the engine clutch engagement/disengagement process. We trained the various models based on multi-layer perceptron (MLP), long short-term memory (LSTM), convolutional neural network (CNN), and one-class support vector machine (one-class SVM) with the actual vehicle test data and compared their results. The test results showed the one-class SVM-based models have the highest anomaly detection performance. Additionally, we found that configuring the training architecture to determine normal/anomaly by data instance and conducting one-class classification is proper for detecting anomalies in the target data.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5429
Author(s):  
Mostafa Shibl ◽  
Loay Ismail ◽  
Ahmed Massoud

Coordinated charging of electric vehicles (EVs) improves the overall efficiency of the power grid as it avoids distribution system overloads, increases power quality, and decreases voltage fluctuations. Moreover, the coordinated charging supports flattening the load profile. Therefore, an effective coordination technique is crucial for the protection of the distribution grid and its components. The substantial power used through charging EVs has undeniable negative impacts on the power grid. Additionally, with the increasing use of EVs, an effective solution for the coordination of EVs charging, particularly when considering the anticipated proliferation of EV fast chargers, is imminently required. In this paper, different machine learning (ML) approaches are compared for the coordination of EVs charging. The ML models can predict the power to be used in EVs charging stations (EVCS). Due to its ability to use historical data to learn and identify patterns for making future decisions with minimal user intervention, ML has been utilized. ML models used in this paper are (1) Decision Tree (DT), (2) Random Forest (RF), (3) Support Vector Machine (SVM), (4) Naïve Bayes (NB), (5) K-Nearest Neighbors (KNN), (6) Deep Neural Networks (DNN), and (7) Long Short-Term Memory (LSTM). These approaches are chosen as they are classifiers known to have the leading results for multiclass classification problems. The results found shed insight on the importance of the techniques used and their high potential in providing a reliable solution for the coordinated charging of EVs, thus improving the performance of the power grid, and reducing power losses and voltage fluctuations. The use of ML provides a less complex method to coordinate EVs, in comparison with conventional optimization techniques such as quadratic programming, and the use of ML is faster as it requires less computational power. LSTM provided the best results with an accuracy of 95% for predicting the most appropriate power rating (PR) for EVCS, followed by RF, DT, DNN, SVM, KNN, and NB. Additionally, LSTM was also the model with the smallest error rate, at a value of ±0.7%, followed by RF, DT, KNN, SVM, DNN, and NB. The results obtained from the LSTM model were similar to the results obtained from past literature using quadratic programming, with the increased speed and simplicity of ML.


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


2021 ◽  
Vol 186 (Supplement_1) ◽  
pp. 445-451
Author(s):  
Yifei Sun ◽  
Navid Rashedi ◽  
Vikrant Vaze ◽  
Parikshit Shah ◽  
Ryan Halter ◽  
...  

ABSTRACT Introduction Early prediction of the acute hypotensive episode (AHE) in critically ill patients has the potential to improve outcomes. In this study, we apply different machine learning algorithms to the MIMIC III Physionet dataset, containing more than 60,000 real-world intensive care unit records, to test commonly used machine learning technologies and compare their performances. Materials and Methods Five classification methods including K-nearest neighbor, logistic regression, support vector machine, random forest, and a deep learning method called long short-term memory are applied to predict an AHE 30 minutes in advance. An analysis comparing model performance when including versus excluding invasive features was conducted. To further study the pattern of the underlying mean arterial pressure (MAP), we apply a regression method to predict the continuous MAP values using linear regression over the next 60 minutes. Results Support vector machine yields the best performance in terms of recall (84%). Including the invasive features in the classification improves the performance significantly with both recall and precision increasing by more than 20 percentage points. We were able to predict the MAP with a root mean square error (a frequently used measure of the differences between the predicted values and the observed values) of 10 mmHg 60 minutes in the future. After converting continuous MAP predictions into AHE binary predictions, we achieve a 91% recall and 68% precision. In addition to predicting AHE, the MAP predictions provide clinically useful information regarding the timing and severity of the AHE occurrence. Conclusion We were able to predict AHE with precision and recall above 80% 30 minutes in advance with the large real-world dataset. The prediction of regression model can provide a more fine-grained, interpretable signal to practitioners. Model performance is improved by the inclusion of invasive features in predicting AHE, when compared to predicting the AHE based on only the available, restricted set of noninvasive technologies. This demonstrates the importance of exploring more noninvasive technologies for AHE prediction.


Author(s):  
Mohamad Nassereddine

AbstractRenewable energy sources are widely installed across countries. In recent years, the capacity of the installed renewable network supports large percentage of the required electrical loads. The relying on renewable energy sources to support the required electrical loads could have a catastrophic impact on the network stability under sudden change in weather conditions. Also, the recent deployment of fast charging stations for electric vehicles adds additional load burden on the electrical work. The fast charging stations require large amount of power for short period. This major increase in power load with the presence of renewable energy generation, increases the risk of power failure/outage due to overload scenarios. To mitigate the issue, the paper introduces the machine learning roles to ensure network stability and reliability always maintained. The paper contains valuable information on the data collection devises within the power network, how these data can be used to ensure system stability. The paper introduces the architect for the machine learning algorithm to monitor and manage the installed renewable energy sources and fast charging stations for optimum power grid network stability. Case study is included.


2021 ◽  
Vol 11 (10) ◽  
pp. 4443
Author(s):  
Rokas Štrimaitis ◽  
Pavel Stefanovič ◽  
Simona Ramanauskaitė ◽  
Asta Slotkienė

Financial area analysis is not limited to enterprise performance analysis. It is worth analyzing as wide an area as possible to obtain the full impression of a specific enterprise. News website content is a datum source that expresses the public’s opinion on enterprise operations, status, etc. Therefore, it is worth analyzing the news portal article text. Sentiment analysis in English texts and financial area texts exist, and are accurate, the complexity of Lithuanian language is mostly concentrated on sentiment analysis of comment texts, and does not provide high accuracy. Therefore in this paper, the supervised machine learning model was implemented to assign sentiment analysis on financial context news, gathered from Lithuanian language websites. The analysis was made using three commonly used classification algorithms in the field of sentiment analysis. The hyperparameters optimization using the grid search was performed to discover the best parameters of each classifier. All experimental investigations were made using the newly collected datasets from four Lithuanian news websites. The results of the applied machine learning algorithms show that the highest accuracy is obtained using a non-balanced dataset, via the multinomial Naive Bayes algorithm (71.1%). The other algorithm accuracies were slightly lower: a long short-term memory (71%), and a support vector machine (70.4%).


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 374 ◽  
Author(s):  
Sudhanshu Kumar ◽  
Monika Gahalawat ◽  
Partha Pratim Roy ◽  
Debi Prosad Dogra ◽  
Byung-Gyu Kim

Sentiment analysis is a rapidly growing field of research due to the explosive growth in digital information. In the modern world of artificial intelligence, sentiment analysis is one of the essential tools to extract emotion information from massive data. Sentiment analysis is applied to a variety of user data from customer reviews to social network posts. To the best of our knowledge, there is less work on sentiment analysis based on the categorization of users by demographics. Demographics play an important role in deciding the marketing strategies for different products. In this study, we explore the impact of age and gender in sentiment analysis, as this can help e-commerce retailers to market their products based on specific demographics. The dataset is created by collecting reviews on books from Facebook users by asking them to answer a questionnaire containing questions about their preferences in books, along with their age groups and gender information. Next, the paper analyzes the segmented data for sentiments based on each age group and gender. Finally, sentiment analysis is done using different Machine Learning (ML) approaches including maximum entropy, support vector machine, convolutional neural network, and long short term memory to study the impact of age and gender on user reviews. Experiments have been conducted to identify new insights into the effect of age and gender for sentiment analysis.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lei Li ◽  
Desheng Wu

PurposeThe infraction of securities regulations (ISRs) of listed firms in their day-to-day operations and management has become one of common problems. This paper proposed several machine learning approaches to forecast the risk at infractions of listed corporates to solve financial problems that are not effective and precise in supervision.Design/methodology/approachThe overall proposed research framework designed for forecasting the infractions (ISRs) include data collection and cleaning, feature engineering, data split, prediction approach application and model performance evaluation. We select Logistic Regression, Naïve Bayes, Random Forest, Support Vector Machines, Artificial Neural Network and Long Short-Term Memory Networks (LSTMs) as ISRs prediction models.FindingsThe research results show that prediction performance of proposed models with the prior infractions provides a significant improvement of the ISRs than those without prior, especially for large sample set. The results also indicate when judging whether a company has infractions, we should pay attention to novel artificial intelligence methods, previous infractions of the company, and large data sets.Originality/valueThe findings could be utilized to address the problems of identifying listed corporates' ISRs at hand to a certain degree. Overall, results elucidate the value of the prior infraction of securities regulations (ISRs). This shows the importance of including more data sources when constructing distress models and not only focus on building increasingly more complex models on the same data. This is also beneficial to the regulatory authorities.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7853
Author(s):  
Aleksej Logacjov ◽  
Kerstin Bach ◽  
Atle Kongsvold ◽  
Hilde Bremseth Bårdstu ◽  
Paul Jarle Mork

Existing accelerometer-based human activity recognition (HAR) benchmark datasets that were recorded during free living suffer from non-fixed sensor placement, the usage of only one sensor, and unreliable annotations. We make two contributions in this work. First, we present the publicly available Human Activity Recognition Trondheim dataset (HARTH). Twenty-two participants were recorded for 90 to 120 min during their regular working hours using two three-axial accelerometers, attached to the thigh and lower back, and a chest-mounted camera. Experts annotated the data independently using the camera’s video signal and achieved high inter-rater agreement (Fleiss’ Kappa =0.96). They labeled twelve activities. The second contribution of this paper is the training of seven different baseline machine learning models for HAR on our dataset. We used a support vector machine, k-nearest neighbor, random forest, extreme gradient boost, convolutional neural network, bidirectional long short-term memory, and convolutional neural network with multi-resolution blocks. The support vector machine achieved the best results with an F1-score of 0.81 (standard deviation: ±0.18), recall of 0.85±0.13, and precision of 0.79±0.22 in a leave-one-subject-out cross-validation. Our highly professional recordings and annotations provide a promising benchmark dataset for researchers to develop innovative machine learning approaches for precise HAR in free living.


Algorithms ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 170 ◽  
Author(s):  
Zhixi Li ◽  
Vincent Tam

Momentum and reversal effects are important phenomena in stock markets. In academia, relevant studies have been conducted for years. Researchers have attempted to analyze these phenomena using statistical methods and to give some plausible explanations. However, those explanations are sometimes unconvincing. Furthermore, it is very difficult to transfer the findings of these studies to real-world investment trading strategies due to the lack of predictive ability. This paper represents the first attempt to adopt machine learning techniques for investigating the momentum and reversal effects occurring in any stock market. In the study, various machine learning techniques, including the Decision Tree (DT), Support Vector Machine (SVM), Multilayer Perceptron Neural Network (MLP), and Long Short-Term Memory Neural Network (LSTM) were explored and compared carefully. Several models built on these machine learning approaches were used to predict the momentum or reversal effect on the stock market of mainland China, thus allowing investors to build corresponding trading strategies. The experimental results demonstrated that these machine learning approaches, especially the SVM, are beneficial for capturing the relevant momentum and reversal effects, and possibly building profitable trading strategies. Moreover, we propose the corresponding trading strategies in terms of market states to acquire the best investment returns.


Sign in / Sign up

Export Citation Format

Share Document