scholarly journals Energy Management in the Railway Industry: A Case Study of Rail Freight Carrier in Poland

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6875
Author(s):  
Aleksandra Kuzior ◽  
Marek Staszek

Energy is crucial to economic development, but its production usually has a negative impact on the environment. This ambivalence leads to the need for methods to improve energy efficiency. Transportation is one of the largest global energy consumers. Therefore, improving the energy efficiency of transportation is crucial for sustainable development. The aim of this article is to show the limitations of energy management in railways, resulting from the model of market regulation. The question in this context is whether only technological methods can be used in railways to steer its energy efficiency, as is suggested by the existing research. Critical analysis, desk research and a case study of Polish railway undertaking were used to find an answer to the research question. The discussion of the results shows that the European regulatory system leads to greater complications in the field of energy management than in other global regions, where railways are also important for the economy. Due to these limitations, rail operators use indirect methods to measure energy efficiency. Results indicate that although energy efficiency improvements are being achieved, they are mainly due to organizational measures and not technological ones as could be expected based on previous research.

Author(s):  
Rade M. Ciric ◽  
Sasa N. Mandic

AbstractThe Republic of Serbia must make significant efforts to promote and exploit renewable energy sources and increase energy efficiency in all energy sectors to ensure energy security and economic competitiveness, reduce the negative impact on the environment from energy production and use, and contribute to global efforts to reduce greenhouse gases. Within the paper several issues of integration of recently realized CHP plant are introduced and discussed. Firstly, the legal and energy policy issues in the Republic of Serbia regarding connecting CHP to the grid are presented. The challenges and technical solutions for CHP connection to the grid, as well as power quality issues and the role of the CHP plant during the restoration of power supply during the maintenance of the substation and unplanned loss of high voltage supply, are presented and discussed. Finally, the impact of prospective massive integration of CHP on the energy balance and CO2 emission reduction in the province of Vojvodina in Serbia is investigated and discussed. Since it is the first CHP plant realized in Serbia, it is crucial that experience be shared to all potential stakeholders in the future energy efficiency projects.


2021 ◽  
Vol 13 (3) ◽  
pp. 1584
Author(s):  
Roberto Araya ◽  
Pedro Collanqui

Education is critical for improving energy efficiency and reducing CO2 concentration, but collaboration between countries is also critical. It is a global problem in which we cannot isolate ourselves. Our students must learn to collaborate in seeking solutions together with others from other countries. Thus, the research question of this study is whether interactive cross-border science classes with energy experiments are feasible and can increase awareness of energy efficiency among middle school students. We designed and tested an interactive cross-border class between Chilean and Peruvian eighth-grade classes. The classes were synchronously connected and all students did experiments and answered open-ended questions on an online platform. Some of the questions were designed to check conceptual understanding whereas others asked for suggestions of how to develop their economies while keeping CO2 air concentration at acceptable levels. In real time, the teacher reviewed the students’ written answers and the concept maps that were automatically generated based on their responses. Students peer-reviewed their classmates’ suggestions. This is part of an Asia-Pacific Economic Cooperation (APEC) Science Technology Engineering Mathematics (STEM) education project on energy efficiency using APEC databases. We found high levels of student engagement, where students discussed not only the cross-cutting nature of energy, but also its relation to socioeconomic development and CO2 emissions, and the need to work together to improve energy efficiency. In conclusion, interactive cross-border science classes are a feasible educational alternative, with potential as a scalable public policy strategy for improving awareness of energy efficiency among the population.


Author(s):  
Shounak Basak ◽  
Sudhanshu Shekhar ◽  
Kushal Saha

Sustainability has assumed increased importance in view of the international focus on pollution control and climate change. Specifically, the development of sustainable supply chain can help in important ways to reduce pollution and address environmental concerns. Energy efficiency forms an important aspect of this movement towards sustainable supply chain. Energy efficiency can be achieved through judicious energy management initiatives at the supply chain level. A metrics-based approach provides an effective mechanism to implement energy management programs in supply chain operation. The chapter explores the utility of energy balance sheet as a metric to implement such energy management programs. It further looks at the challenges and opportunities faced by supply chain partners in implementing energy management programs. It uses the case study of Firozabad glass industry to illustrate the implementation of energy management for developing sustainable supply chain.


2020 ◽  
Vol 12 (17) ◽  
pp. 7006
Author(s):  
Josefine Rasmussen

Energy efficiency is an important means for sustainable manufacturing. One action for manufacturing companies to improve energy efficiency is through investments. While these investments often are profitable, opportunities remain unexploited. This paper explores the structural context of the investment decision-making process by examining the associated activities, procedures, and the role of information. While the structural context may limit complex investments that do not fit predefined rules and controls, such as energy efficiency and other sustainability-related investments, it remains a scarcely studied aspect of investment decision-making for energy efficiency investments. Method-wise, the paper is based on a case study of a major investment at a pulp and paper company, motivated and justified based on productivity, strategic, energy, and sustainability rationales. The paper contributes with illustrating how configurations of internal investment activities and procedures may be crucial for sustainability-related investments to pass through the investment process. Moreover, the configuration of activities and procedures is also indicated as influential for the way in which an investment is executed. Hence, for energy efficiency and other sustainability-related investments to make business sense constitutes more than achieving desirable payback periods; the structural context should be considered.


Sensor Review ◽  
2014 ◽  
Vol 34 (2) ◽  
pp. 170-181 ◽  
Author(s):  
David Robinson ◽  
David Adrian Sanders ◽  
Ebrahim Mazharsolook

Purpose – This paper aims to describe research work to create an innovative, and intelligent solution for energy efficiency optimisation. Design/methodology/approach – A novel approach is taken to energy consumption monitoring by using ambient intelligence (AmI), extended data sets and knowledge management (KM) technologies. These are combined to create a decision support system as an innovative add-on to currently used energy management systems. Standard energy consumption data are complemented by information from AmI systems from both environment-ambient and process ambient sources and processed within a service-oriented-architecture-based platform. The new platform allows for building of different energy efficiency software services using measured and processed data. Four were selected for the system prototypes: condition-based energy consumption warning, online diagnostics of energy-related problems, support to manufacturing process lines installation and ramp-up phase, and continuous improvement/optimisation of energy efficiency. Findings – An innovative and intelligent solution for energy efficiency optimisation is demonstrated in two typical manufacturing companies, within one case study. Energy efficiency is improved and the novel approach using AmI with KM technologies is shown to work well as an add-on to currently used energy management systems. Research limitations/implications – The decision support systems are only at the prototype stage. These systems improved on existing energy management systems. The system functionalities have only been trialled in two manufacturing companies (the one case study is described). Practical implications – A decision support system has been created as an innovative add-on to currently used energy management systems and energy efficiency software services are developed as the front end of the system. Energy efficiency is improved. Originality/value – For the first time, research work has moved into industry to optimise energy efficiency using AmI, extended data sets and KM technologies. An AmI monitoring system for energy consumption is presented that is intended for use in manufacturing companies to provide comprehensive information about energy use, and knowledge-based support for improvements in energy efficiency. The services interactively provide suggestions for appropriate actions for energy problem elimination and energy efficiency increase. The system functionalities were trialled in two typical manufacturing companies, within one case study described in the paper.


2018 ◽  
Vol 7 (3) ◽  
pp. 1474
Author(s):  
V Prashanthi ◽  
D Suresh Babu ◽  
C V. Guru Rao

Existing approach of routing protocols had only partial support towards energy efficiency. However, none of them had focused on considering network coding aware routing to reduce energy consumption. Majority of the existing solutions in literature to improve the communication performance of MANET has focused on minimum cost routing protocols. There are very less significant studies towards network coding in performing routing in MANET system. Therefore, it is totally unknown how network coding could be used to solve such issues. Throughput in wireless networks can be enhanced with the help of network coding. This approach also increases network lifetime in the cases of devices running on battery, such as wireless sensor nodes. Additionally, network coding achieves a reduction in the number of transmissions needed for transmission of a specific message through the network by making energy usage more efficient. Despite its benefits, however, network coding can have a negative impact on network lifetime if it is implemented excessively. Initially, to achieve the goal of improving throughput, reducing energy efficiency by reducing the number of broadcasting transmissions, a network coding model is created in this study and the MANET broadcast based on network coding is improved by the heuristic principle of Ant Colony Optimization. This study proposes the application of a network coding based dominating set approach to traditional routing protocols like adhoc on demand distance vector (AODV) as a solution to this issue. Coding gain of different topologies with different offer loads is evaluated using network coding. We discussed the performance of Alice-bob, cross, X, and wheel topologies using network coding. The study has paid particular attention to the trade-off between selection of paths compatible with network coding and network lifetime. The present study addresses this compromise that demonstrates that networks with energy restrictions are incompatible with the current network coding strategies based on throughput. One routing issue is attributed particular importance, namely, reduction of overall energy usage and improvement of individual node lifetime through effective routing of a series of traffic demands over the network. A range of analytical formulations is put forth to generate an optimal solution for the issue of multi-path routing. Results show that, by comparison to solutions without network coding, the suggested solutions improve energy efficiency while at the same time satisfying the specified lifetime restrictions.


2020 ◽  
Vol 20 (4) ◽  
Author(s):  
Dinh Manh Nguyen ◽  
Grace Ding ◽  
Göran Runeson

Over many decades, buildings have been recognised as a significant area contributing to the negative impacts on the environment over their lifecycle, accelerating climate change. In return, climate change also impacts on buildings with extreme heatwaves occurring more frequently and raising the earth’s temperature. The operation phase is the most extended period over a building’s lifespan. In this period, office buildings consume most energy and emit the highest amount of greenhouse gas pollution into the environment. Building upgrading to improve energy efficiency seems to be the best way to cut pollution as the existing building stock is massive. The paper presents an economic analysis of energy efficiency upgrade of buildings with a focus of office buildings. The paper identifies upgrading activities that are commonly undertaken to upgrade energy efficiency of office buildings and a case study of three office buildings in Sydney, Australia has been used to analyse the results. The upgrading activities can improve the energy performance of the case study buildings from 3 stars to 5 stars NABERS energy rating in compliance with the mandatory requirement in the Australian government’s energy policy. With the potential increase in energy price, energy efficiency upgrading will become more affordable, but currently, most of them, except solar panels and motion sensors show a negative return and would not be undertaken if they did not also contribute to higher rental income and an increased life span of the building. The upgrading discussed in the paper represent a potentially attractive alternative to demolition and building anew.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5629
Author(s):  
Piotr Gołębiowski ◽  
Marianna Jacyna ◽  
Andrzej Stańczak

The issues addressed by the article concern the assessment of energy efficiency in rail transport, resulting from the proper organization of rail traffic. The problems related to energy consumption and, thus, the negative impact of rail transport on the natural environment are highly significant in terms of the green deal concept, climate change and sustainable development. In this article, energy efficiency is investigated in the context of minimizing the energy consumption necessary to satisfy a specific transport requirement. The essence of this article is to present an approach to energy-efficient planning of rail freight traffic. This article aims to develop a method covers the allocation of railway vehicles dedicated to freight traffic (locomotives and railcars) to perform a defined transport task, taking into account the energy efficiency assessment of the solution, routing the train launched with regard to the accomplishment of the defined transport task on the railway network, and determining the conditions of transport for a defined transport task, taking into account the allocated rolling stock (locomotives and railcars) and the route. In this article, based on the presented state of knowledge, a decision-making model has been proposed, including the model’s parameters, the values being searched for, indicators for assessing the quality of the solution, as well as the limitations and boundary conditions of the problem. The function of minimizing the energy consumption necessary to transport a shipment within the railway network (determining the energy efficiency of the proposed solution) has been proposed as the criterion. In addition, a description of the proprietary method of selecting rolling stock for accomplishing tasks, based on the assessment of the energy efficiency of the solution and a case study illustrating the operation of the method on the example of the area of Poland, has been presented.


2017 ◽  
Vol 23 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Xiaohua Xia ◽  
Jiangfeng Zhang ◽  
William Cass

This paper aims at analyzing the energy management activities for commercial buildings of a financial service company in South Africa by energy efficiency in terms of performance, operation, equipment and technology (POET). The sustainability of a general energy management program is discussed within this POET framework. As an application of this discussion to the commercial building scenario, the award winning energy management program of this financial service group company is featured from the POET perspective of energy efficiency. The case study shows that the POET based framework can not only cover all major energy management activities, but also identify further energy efficiency improvement opportunities.


Sign in / Sign up

Export Citation Format

Share Document