scholarly journals Experimental Study on Hydroelectric Energy Harvester Based on a Hybrid Qiqi and Turbine Structure

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7601
Author(s):  
Bin Bao ◽  
Quan Wang ◽  
Yufei Wu ◽  
Pengda Li

The Qiqi structure design can automatically upset and spill its content once it arrives at limit capacity under vertical water flow excitation. Considering this function, the Qiqi structure has been utilized for small hydroelectric energy harvesting lately. To investigate the tradeoff between the Qiqi structure and the turbine structure for small hydroelectric energy harvesting, an energy harvester based on a hybrid Qiqi and turbine structure is proposed for vertical water flow hydroelectric applications. The hybrid structure is composed of a rectangular Qiqi structure, with two blades inserted on both sides. Self-tipping function of the hybrid Qiqi structure and working principle of the structure is investigated in detail. The proposed structure has both the advantages of low flow velocity energy harvesting of the Qiqi structure and high flow velocity energy harvesting of the turbine structure. A hydroelectric energy harvesting application using the hybrid structure is given to demonstrate that the hybrid structure had a higher rotational speed than the Qiqi structure under vertical low water flow excitation and was able to work at relatively high flow rates. Thus, the investigated hybrid structure can help small rotational hydropower achieve better energy harvesting performance and work at wide-range flow rates under vertical ultra-low water flow applications. At 600 mL/min, 902 μJ of electrical energy was charged by the investigated structure, which is six times higher than that using the Qiqi structure alone.

CORROSION ◽  
1959 ◽  
Vol 15 (4) ◽  
pp. 29-32
Author(s):  
M. KRULFELD ◽  
M. C. BLOOM ◽  
R. E. SEEBOLD

Abstract A method of applying the hydrogen effusion method to the measurement of corrosion rates in dynamic aqueous systems at elevated temperature and pressure is described. Data obtained in low carbon steel systems are presented, including (1) reproducibility obtained in measured hydrogen effusion rates at a flow velocity of 1 foot per second at a temperature of 600 F and 2000 psi, and (2) a quantitative comparison between the hydrogen effusion rates in static and in low flow velocity dynamic systems at this temperature and pressure. Some observations are included on corrosion rate measurements in a high flow velocity (30 feet per second) loop by the hydrogen effusion method. Implications of these measurements with regard to the comparison between high flow velocity corrosion and low flow velocity corrosion are mentioned and some data indicating high local sensitivity of the hydrogen effusion method are noted. Some possible difficulties involved in the method are pointed out. 2.3.4


2019 ◽  
Vol 36 (4) ◽  
pp. 401-410 ◽  
Author(s):  
Xiao-Qi Jia ◽  
Bao-Ling Cui ◽  
Zu-Chao Zhu ◽  
Yu-Liang Zhang

Abstract Affected by rotor–stator interaction and unstable inner flow, asymmetric pressure distributions and pressure fluctuations cannot be avoided in centrifugal pumps. To study the pressure distributions on volute and front casing walls, dynamic pressure tests are carried out on a centrifugal pump. Frequency spectrum analysis of pressure fluctuation is presented based on Fast Fourier transform and steady pressure distribution is obtained based on time-average method. The results show that amplitudes of pressure fluctuation and blade-passing frequency are sensitive to the flow rate. At low flow rates, high-pressure region and large pressure gradients near the volute tongue are observed, and the main factors contributing to the pressure fluctuation are fluctuations in blade-passing frequency and high-frequency fluctuations. By contrast, at high flow rates, fluctuations of rotating-frequency and low frequencies are the main contributors to pressure fluctuation. Moreover, at low flow rates, pressure near volute tongue increases rapidly at first and thereafter increases slowly, whereas at high flow rates, pressure decreases sharply. Asymmetries are observed in the pressure distributions on both volute and front casing walls. With increasing of flow rate, both asymmetries in the pressure distributions and magnitude of the pressure decrease.


2013 ◽  
Vol 52 (10S) ◽  
pp. 10MB01 ◽  
Author(s):  
Kyoung-Bum Kim ◽  
Chang Il Kim ◽  
Young Hun Jeong ◽  
Jeong-Ho Cho ◽  
Jong-Hoo Paik ◽  
...  

1983 ◽  
Vol 26 ◽  
Author(s):  
Aaron Barkatt ◽  
William Sousanpour ◽  
Alisa Barkatt ◽  
Morad A. Boroomand ◽  
Pedro B. Macedo

ABSTRACTLeach tests carried out on SRL TDS-131 Defense Waste Class indicate that at high flow rates the controlling mechanism is simple corrosion. The matrix elements (Si, Al) are leached out at rates similar to those of the leaching of the alkalis and of boron, and the leaching process is nearly linear with time. At slow flow rates (below 1 m/yr) leaching becomes controlled by the build-up of a protective layer. Al and most of the Si remain in the leached surface layer. The leach rates decrease in the course of the test before leveling off at constant values which are almost inversely proportional to the contact time, indicating that leachate concentrations have become solubility-limited. The low concentrations observed at this stage indicate the formation of alteration products.


2020 ◽  
Author(s):  
Daniel Madrzykowski ◽  
◽  
Nick Down

This study was designed to be an initial step to investigate the potential of low flow nozzles as part of a retrofit flashover prevention system in residential homes with limited water supplies. Not all homes have water supplies that can meet the needs of a residential sprinkler system. Current alter- natives, such as including a supplemental tank and pump, increase the cost of the system. These homes could benefit from an effective fire safety system with lower water supply requirements. The experiments in this study were conducted in a steel test structure which consisted of a fire room attached to a hallway in an L-shaped configuration. Three types of experiments were conducted to evaluate nozzles at different flow rates and under different fire conditions. The performance of the nozzles was compared to the performance of a commercially available residential sprinkler. The first set of experiments measured the distribution of the water spray from each of the nozzles and the sprinkler. The water spray measurements were made without the presence of a fire. The other two sets of experiments were fire experiments. The first set of fire experiments were designed to measure the ability of a water spray to cool a hot gas layer generated by a gas burner fire. The fire source was a propane burner which provided a steady and repeatable flow of heat into the test structure. Two water spray locations were examined, in the fire room and in the middle of the hallway. In each position, the burner was shielded from the water spray. The results showed that for equivalent conditions, the nozzle provided greater gas cooling than the sprinkler. The tests were conducted with a fire size of approximately 110 kW, and water flow rates in the range of 11 lpm (3 gpm) and 19 lpm (5 gpm). The second set of fire experiments used an upholstered sofa as the initial source of the fire with the water spray located in the same room. As a result of the compartment size and water spray distribution, the nozzle flowing water at 23 lpm (6 gpm) provided more effective suppression of the fire than the sprinkler flowing 34 lpm (9 gpm) did. The nozzle was similarly effective with the ignition location moved 1.0 m (3.2 ft) further away. However, the nozzle failed to suppress the fire with a reduced water flow rate of 11 lpm (3 gpm). The results of this limited study demonstrate the potential of low flow nozzles, directly flowing water on to the fuel surface, with the goal of preventing flashover. Additional research is needed to examine larger room sizes, fully furnished rooms, and shielded fires to determine the feasibility of a reduced water flow flashover prevention system.


Author(s):  
Xiongjun Wu ◽  
Greg Loraine ◽  
Chao-Tsung Hsiao ◽  
Georges L. Chahine

The limited amount of liquids and gases that can be carried to space makes it imperative to recycle and reuse these fluids for extended human operations. During recycling processes gas and liquid phases are often intermixed. In the absence of gravity, separating gases from liquids is challenging due to the absence of buoyancy. This paper discusses a phase separator that is capable of efficiently and reliably separating gas-liquid mixtures of both high and low void fractions in a wide range of flow rates that is applicable to reduced and zero gravity environments. The phase separator consists of two concentric cylindrical chambers. The fluid introduced in the space between the two cylinders enters the inner cylinder through tangential slots and generates a high intensity swirling flow. The geometric configuration is selected to make the vortex swirl intense enough to lead to early cavitation which forms a cylindrical vaporous core at the axis even at low flow rates. Taking advantage of swirl and cavitation, the phase separator can force gas out of the liquid into the central core of the vortex even at low void fraction. Gas is extracted from one end of the cylinder axial region and liquid is extracted from the other end. The phase separator has successfully demonstrated its capability to reduce mixture void fractions down to 10−8 and to accommodate incoming mixture gas volume fractions as high as 35% in both earth and reduced gravity flight tests. The phase separator is on track to be tested by NASA on the International Space Station (ISS). Additionally, the phase separator design exhibits excellent scalability. Phase separators of different dimensions, with inlet liquid flow rates that range from a couple of GPMs to a few tens of GPMs, have been built and tested successfully in the presence and absence of the gravity. Extensive ground experiments have been conducted to study the effects of main design parameters on the performance of the phase separator, such as the length and diameter of the inner cylinder; the size, location, and layout of injection slots and exit orifices, etc., on the swirling flow behavior, and on the gas extraction performance. In parallel, numerical simulations, utilizing a two-phase Navier-Stokes flow solver coupled with bubble dynamics, have been conducted extensively to facilitate the development of the phase separator. These simulations have enabled us to better understand the physics behind the phase separation and provided guideline for system parts optimization. This paper describes our efforts in developing the passive phase separator for both space and ground applications.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Alojz Ihan ◽  
Stefan Grosek ◽  
David Stubljar

Background. The aim of our study was to evaluate the damaging impact of characteristics of the central venous catheters (CVCs) on red blood cells. Methods. CVCs from three different manufacturers were analyzed, including the presence of coating, tunnel geometry, length, lumen diameter, and number of lumens with two respective flow rates (33 mL/min and 500 mL/min). Blood cell damage was defined by analyzing microparticle (MP) and hematologic analysis. MPs were isolated by ultracentrifugation of erythrocyte concentrate and analyzed on a flow cytometer. Results. Characteristics of catheters were not associated with blood cell damage at a low flow rate but showed an effect with a high flow rate. CVCs with a polyhexanide methacrylate coating have caused statistically less blood cell damage than noncoated CVCs. The length of lumens, diameter, and geometry of the tunnel showed no differences in blood cell damage. Meanwhile, the number of lumens was predicted to have a greater effect on the erythrocyte damage, which was revealed with the formation of MPs and hematological parameters. CVCs with five lumens caused significantly less damage to the blood cells than CVCs with a single lumen. Moreover, a high flow rate of 500 mL/min caused less damage to the blood cells than a low rate of 33 mL/min. Conclusion. Properties of CVCs are an important factor for quality patient care, especially when transfusing blood with high flow rates, as we want to provide a patient with high-quality blood with as few damaged cells as possible.


2005 ◽  
Vol 20 (12) ◽  
pp. 3244-3254 ◽  
Author(s):  
Xuekun Cheng ◽  
Amy T. Kan ◽  
Mason B. Tomson

In this study, the transport of water-stable “nano-C60 particles” (a term used to refer to underivatized C60 crystalline nanoparticles, stable in water for months) through a soil column (packed with Lula soil, 0.27% organic carbon) was investigated for the first time. Nano-C60 particle breakthrough experiments were conducted at different flow rates, while other column operating parameters remained fixed through all the experiments. Nano-C60 particles were observed to be more mobile at higher flow velocity: at the flow velocity of 0.38 m/d, the maximum percent of nano-C60 breakthrough (C/C0) was 47%; at the flow velocity of 3.8 m/d, the plateau value of nano-C60 breakthrough was 60%; and at the flow velocity of 11.4 m/d, the plateau value of nano-C60 breakthrough was almost 80%. At the low flow velocity (0.38 m/d), which is typical of groundwater flow, nano-C60 particles showed very limited mobility: after about 57 pore volumes, they deposited to the soil column so rapidly that virtually no nano-C60 was detected in the effluent. This observed “favorable deposition” (attachment efficiency α = 1) was probably due to “filter ripening.” Also the release of nano-C60 particles after flow interruption was observed. The transport of naphthalene through the same soil column containing 0.18% nano-C60 particles deposited was measured. A retardation factor of about 13 was observed, possibly suggesting that sorbed nano-C60 particles in the soil column sorbed naphthalene similar to soil organic carbon. An asymmetric naphthalene breakthrough curve was observed, which is possibly due to “sorption nonequilibrium.”


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
Qian-Qian Wang ◽  
Bao-Hong Ping ◽  
Qing-Bo Xu ◽  
Wen Wang

This study investigates rheological effects of blood on steady flows in a nonplanar distal end-to-side anastomosis. The shear-thinning behavior of blood is depicted by a Carreau–Yasuda model and a modified power-law model. To explore effects of nonplanarity in vessel geometry, a curved bypass graft is considered that connects to the host artery with a 90deg out-of-plane curvature. Navier–Stokes equations are solved using a finite volume method. Velocity and wall shear stress (WSS) are compared between Newtonian and non-Newtonian fluids at different flow rates. At low flow rate, difference in axial velocity profiles between Newtonian and non-Newtonian fluids is significant and secondary flows are weaker for non-Newtonian fluids. At high flow rate, non-Newtonian fluids have bigger peak WSS and WSS gradient. The size of the flow recirculation zone near the toe is smaller for non-Newtonian fluids and the difference is significant at low flow rate. The nonplanar bypass graft introduces helical flow in the host vessel. Results from the study reveal that near the bed, heel, and toe of the anastomotic junction where intimal hyperplasia occurs preferentially, WSS gradients are all very big. At high flow rates, WSS gradients are elevated by the non-Newtonian effect of blood but they are reduced at low flow rates. At these locations, blood rheology not only affects the WSS and its gradient but also secondary flow patterns and the size of flow recirculation near the toe. This study reemphasizes that the rheological property of blood is a key factor in studying hemodynamic effects on vascular diseases.


Sign in / Sign up

Export Citation Format

Share Document