scholarly journals Novel Dual Walling Cob Building: Dynamic Thermal Performance

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7663
Author(s):  
Kaoutar Zeghari ◽  
Ayoub Gounni ◽  
Hasna Louahlia ◽  
Michael Marion ◽  
Mohamed Boutouil ◽  
...  

This paper emphasizes the experimental and numerical study of new cob mixes used for insulation and load bearing wall elements. The experimental study provides complete datasets of thermal properties of the new walling materials, using cob with density ranging from 1107 kg/m3 to 1583 kg/m3 for structural walls and less than 700 kg m−3 for insulation walls. Various mixes of French soils and fibres (reed, wheat straw, hemp shiv, hemp straw, and flax straw) with different water contents are studied. The lowest average thermal conductivity is obtained for the structural cob mix prepared of 5% wheat straw and 31% of water content. The insulation mix, prepared with 25% reed and 31% water content, has the lowest thermal conductivity. Investigation of diffusivity, density, and heat capacity shows that, when thermal conductivity is lower than 0.4 W m−1 K−1, the decrease in cob density leads to better insulation values and higher heat capacity. Little variation is noticed regarding the density and heat capacity for cob mixes with thermal conductivity higher than 0.4 W m−1 K−1. Furthermore, the non-uniformity of local thermal conductivity and heat losses through the samples is due mainly to the non-uniform distribution of fibres inside the mixes inducing an increase in heat loss up to 50% for structural walls and 25% for insulation walls. Cob thermal properties are used in a comparative simulation case study of a typical house under French and UK climatic conditions. The energy performance of the conventional building is compared to a dual walled cob building, showing remarkable reduction in energy consumption as the cob walls, whilst maintaining comfortable indoor conditions without additional heating.

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3241
Author(s):  
Krzysztof Powała ◽  
Andrzej Obraniak ◽  
Dariusz Heim

The implemented new legal regulations regarding thermal comfort, the energy performance of residential buildings, and proecological requirements require the design of new building materials, the use of which will improve the thermal efficiency of newly built and renovated buildings. Therefore, many companies producing building materials strive to improve the properties of their products by reducing the weight of the materials, increasing their mechanical properties, and improving their insulating properties. Currently, there are solutions in phase-change materials (PCM) production technology, such as microencapsulation, but its application on a large scale is extremely costly. This paper presents a solution to the abovementioned problem through the creation and testing of a composite, i.e., a new mixture of gypsum, paraffin, and polymer, which can be used in the production of plasterboard. The presented solution uses a material (PCM) which improves the thermal properties of the composite by taking advantage of the phase-change phenomenon. The study analyzes the influence of polymer content in the total mass of a composite in relation to its thermal conductivity, volumetric heat capacity, and diffusivity. Based on the results contained in this article, the best solution appears to be a mixture with 0.1% polymer content. It is definitely visible in the tests which use drying, hardening time, and paraffin absorption. It differs slightly from the best result in the thermal conductivity test, while it is comparable in terms of volumetric heat capacity and differs slightly from the best result in the thermal diffusivity test.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xihao Dong ◽  
Shuai Liu ◽  
Yuanxiang Yu

The thermal properties of soils are affected by many factors, such as temperature, water content, and structure. Based on the transient plane source method of thermal physics, the thermal properties of loess with different water content during the freezing process were tested. We analyzed the variation mechanism of thermal properties from the perspective of phase change. Based on the Pore/Particle and Crack Analysis System (PCAS) and theory of heat transfer, we then analyzed the microstructure and heat conduction process of loess. And a calculation model of volumetric heat capacity of frozen soil was presented. The results show that, in the major phase transition zone, the variation of the thermal properties of loess with temperature is the most significant. And the thermal diffusivity increases sharply with the significant increase of thermal conductivity and the rapid decrease of volumetric heat capacity. Moisture content not only increases the thermal conductivity and volume heat capacity of loess but also makes the influence of temperature on the thermophysical parameters more significant. The effect of temperature on thermal properties is mainly due to the change of heat transfer media caused by phase transition of water-ice, followed by the change of thermal properties of heat transfer media such as soil particles, water, ice, and air with temperature. Increasing the water content reduces the contact thermal resistance between soil particles because of the increase in the thickness of the water film on the surface of soil particles and the thermal conductivity of the heat transfer medium between particles, thus changing the thermal properties of soils.


2014 ◽  
Vol 1041 ◽  
pp. 39-42
Author(s):  
Petra Vojkůvková ◽  
Ondřej Šikula

This contribution deals with experimental determination of thermal properties needed for transient heat transfer calculation by conduction in highly viscous fluids; which are the density, thermal conductivity and specific heat capacity. Density was determined by direct method, heat capacity was measured with mixing calorimeter and thermal conductivity was studied with two different measuring equipments. Experimental set up for determination of thermal conductivity was designed and constructed by the author. Results were corrected by numerical simulations in CalA software. All measurement quantities were compared with calculations based on the chemical composition of the substance. The determined thermal properties can be used for calculation of energy performance of heating and cooling of highly viscous fluids.


2013 ◽  
Vol 8 (No. 4) ◽  
pp. 141-150 ◽  
Author(s):  
R. Kodešová ◽  
M. Vlasáková ◽  
M. Fér ◽  
D. Teplá ◽  
O. Jakšík ◽  
...  

Knowledge of soil thermal properties is essential when assessing heat transport in soils. Thermal regime of soils is associated with many other soil processes (water evaporation and diffusion, plant transpiration, contaminants behaviour etc.). Knowledge of thermal properties is needed when assessing effectivity of energy gathering from soil profiles using horizontal ground heat exchangers, which is a topic of our research project. The study is focused on measuring of thermal properties (thermal conductivity and heat capacity) of representative soils of the Czech Republic. Measurements were performed on soil samples taken from the surface horizons of 13 representative soil types and from 4 soil substrates, and on mulch (bark chips) sample using KD2 PRO device with TR-1 and SH-1 sensors. The measured relationships between the thermal conductivity and volumetric soil-water content were described by the non-linear equations and those between the volumetric heat capacity and volumetric soil-water content were expressed using the linear equations. The highest thermal conductivities were measured in soils on quartz sand substrates. The lowest thermal conductivities were measured in the Stagnic Chernozem Siltic on marlite and the Dystric Cambisol on orthogneiss. The opposite trend was observed for maximal heat capacities, i.e. the highest values were measured in the Stagnic Chernozem Siltic and the lowest in sand and soils on sand and sandy gravel substrate.


Author(s):  
Yener Usul ◽  
Mustafa Özçatalbaş

Abstract Increasing demand for usage of electronics intensely in narrow enclosures necessitates accurate thermal analyses to be performed. Conduction based FEM (Finite Element Method) is a common and practical way to examine the thermal behavior of an electronic system. First step to perform a numerical analysis for any system is to set up the correct analysis model. In this paper, a method for obtaining the coefficient of thermal conductivity and specific heat capacity of a PCB which has generally a complex composite layup structure composed of conductive layers, and dielectric layers. In the study, above mentioned properties are obtained performing a simple nondestructive experiment and a numerical analysis. In the method, a small portion of PCB is sandwiched from one side at certain pressure by jaws. A couple of linear temperature profiles are applied to the jaws successively. Unknown values are tuned in the analysis model until the results of FEM analysis and experiment match. The values for the coefficient of thermal conductivity and specific heat capacity which the experiment and numerical analysis results match can be said to be the actual values. From this point on, the PCB whose thermal properties are determined can be analyzed numerically for any desired geometry and boundary condition.


Nanoscale ◽  
2018 ◽  
Vol 10 (32) ◽  
pp. 15402-15409 ◽  
Author(s):  
M. R. Rodríguez-Laguna ◽  
A. Castro-Alvarez ◽  
M. Sledzinska ◽  
J. Maire ◽  
F. Costanzo ◽  
...  

While the dispersion of nanomaterials is known to be effective in enhancing the thermal conductivity and specific heat capacity of fluids, the mechanisms behind this enhancement remain to be elucidated.


Author(s):  
Siti Shahirah Suhaili ◽  
Md Azree Othuman Mydin ◽  
Hanizam Awang

The addition of mesocarp fibre as a bio-composite material in foamed concrete can be well used in building components to provide energy efficiency in the buildings if the fibre could also offer excellent thermal properties to the foamed concrete. It has practical significance as making it a suitable material for building that can reduce heat gain through the envelope into the building thus improved the internal thermal comfort. Hence, the aim of the present study is to investigate the influence of different volume fractions of mesocarp fibre on thermal properties of foamed concrete. The mesocarp fibre was prepared with 10, 20, 30, 40, 50 and 60% by volume fraction and then incorporated into the 600, 1200 and 1800 kg/m3 density of foamed concrete with constant cement-sand ratio of 1:1.5 and water-cement ratio of 0.45. Hot disk thermal constant analyser was used to attain the thermal conductivity, thermal diffusivity and specific heat capacity of foamed concrete of various volume fractions and densities. From the experimental results, it had shown that addition of mesocarp fibre of 10-40% by volume fraction resulting in low thermal conductivity and specific heat capacity and high the thermal diffusivity of foamed concrete with 600 and 1800 kg/m3 density compared to the control mix while the optimum amount of mesocarp fibre only limit up to 30% by volume fraction for 1200 kg/m3 density compared to control mix. The results demonstrated a very high correlation between thermal conductivity, thermal diffusivity and specific heat capacity which R2 value more than 90%.


2010 ◽  
Vol 05 (03) ◽  
pp. 129-151 ◽  
Author(s):  
ROBERT L. MCINTOSH ◽  
VITAS ANDERSON

Accurate numerical calculation of the thermal profile in humans requires reliable estimates of the following five tissue properties: specific heat capacity (c), thermal conductivity (k), blood perfusion rates (m), metabolic heat production (A0), and density (ρ). A sixth property, water content (w, as a %), can also be used to estimate c and k. To date, researchers have used various and inconsistent estimates of these parameters, which hinders comparison of the corresponding results. In an effort to standardize and improve the accuracy of these parameters for future studies, we have documented over 150 key papers and books and developed a database of the six thermal properties listed above for 43 human tissues. For each tissue and each property the following were obtained: the average value, the number of source values, the minimum and maximum of source values, and the reference for each source value. A key premise for the development of the database was to only use references that provided the original measurements. This database is offered for use by the biological thermal modeling community to help improve the accuracy and consistency of thermal modeling results.


1991 ◽  
Vol 42 (1) ◽  
pp. 191 ◽  
Author(s):  
WK Gardner ◽  
GK McDonald ◽  
SE Ellis ◽  
M Platt ◽  
RG Flood

A mathematical model of heat flux in which net flux was assumed to be proportional to the surface temperature was used to examine the effects of important environmental variables on minimum surface temperatures reached during cloudless nights. Variables considered were altitude, atmospheric water content, surface emissivity, soil heat capacity and conductivity, length of night, and initial starting temperature. Final temperatures reached were especially sensitive to changes in soil thermal conductivity and heat capacity. Both these parameters are affected by moisture content (particularly when low), making this the single most important factor affecting the severity of frost. Lower initial starting temperatures and longer nights increase the severity of frosting, as does any decrease in the depth of the atmosphere (as happens with changes in altitude) or reductions in the water content of the atmosphere. Emissivity of the radiating surface is relatively unimportant. Temperature profiles in the soil were similar, but extended to greater depths as heat capacitance declined, whereas lower thermal conductivity resulted in cooler surface temperatures while the decline in temperature did not extend as deep. The model was shown to be an improvement on one in which net flux was assumed to remain constant, and allows for a more instructive sensitivity analysis.


Author(s):  
Saeed Naeemi ◽  
Seyed Abdolmehdi Hashemi

In the current work, a numerical study on combustion of premixed H2–air in a micro-cylindrical combustor was carried out and the critical velocity of inlet flow that causes the blow-off was obtained. Furthermore, the effects the equivalence ratio, wall thickness, geometry of combustor and thermal properties of walls on the critical blow-off velocity were studied. The numerical results showed that, increasing the equivalence ratio results in higher critical blow-off velocity. A micro combustor with thicker wall had better flame stability. As the combustor dimeter is decreased the blow-off occur in lower inlet flow velocity. Higher thermal conductivity of walls increases the critical blow-off velocity. In addition, with varying heat convection coefficient (h) and emissivity coefficient [Formula: see text] of the walls from 1 to 60 W/m2.K and 0.2 to 0.8 respectively, the critical blow-off velocity is reduced and shows the importance of wall thermal properties in the design and operation of micro-combustors.


Sign in / Sign up

Export Citation Format

Share Document