scholarly journals Sedimentation Tanks for Treating Rainwater: CFD Simulations and PIV Experiments

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7852
Author(s):  
Krystian Czernek ◽  
Marek Ochowiak ◽  
Daniel Janecki ◽  
Tomasz Zawilski ◽  
Leszek Dudek ◽  
...  

The removal of solids is the most important step when treating rainwater. The article evaluates two designs of sedimentation tanks that can be used for the continuous separation of fine particles from water: OS—standard sedimentation tanks, and OW—swirl sedimentation tanks. The tanks were studied by conducting computational fluid dynamics (CFD) modeling and particle image velocimetry (PIV) experiments. The settling process in sedimentation tank was carried out at varying operating flow rates. A tank with a modified structure was used for the tests, where water was supplied by a nozzle placed at an angle. This solution made it possible to obtain a rotational flow that transported the suspended particles towards its wall, where downward axial velocity resulted in the settling of particles. Based on the research, it was observed that the flow patterns showed inward flow at the bottom of the tank and an upward flow and the lifting of the settled particles near the hatch at the bottom. The presented experimental measurements provided detailed insight into flow patterns, and valuable calibration and verification data for further CFD modeling. Traditional PIV techniques are useful in the case of standard design, whereas CFD is invaluable for supporting this work and for investigating the design of novel sedimentation tanks.

TAPPI Journal ◽  
2015 ◽  
Vol 14 (1) ◽  
pp. 51-60
Author(s):  
HONGHI TRAN ◽  
DANNY TANDRA

Sootblowing technology used in recovery boilers originated from that used in coal-fired boilers. It started with manual cleaning with hand lancing and hand blowing, and evolved slowly into online sootblowing using retractable sootblowers. Since 1991, intensive research and development has focused on sootblowing jet fundamentals and deposit removal in recovery boilers. The results have provided much insight into sootblower jet hydrodynamics, how a sootblower jet interacts with tubes and deposits, and factors influencing its deposit removal efficiency, and have led to two important innovations: fully-expanded sootblower nozzles that are used in virtually all recovery boilers today, and the low pressure sootblowing technology that has been implemented in several new recovery boilers. The availability of powerful computing systems, superfast microprocessors and data acquisition systems, and versatile computational fluid dynamics (CFD) modeling capability in the past two decades has also contributed greatly to the advancement of sootblowing technology. High quality infrared inspection cameras have enabled mills to inspect the deposit buildup conditions in the boiler during operation, and helped identify problems with sootblower lance swinging and superheater platens and boiler bank tube vibrations. As the recovery boiler firing capacity and steam parameters have increased markedly in recent years, sootblowers have become larger and longer, and this can present a challenge in terms of both sootblower design and operation.


Author(s):  
Mathias Vermeulen ◽  
Cedric Van Holsbeke ◽  
Tom Claessens ◽  
Jan De Backer ◽  
Peter Van Ransbeeck ◽  
...  

An experimental and numerical platform was developed to investigate the fluidodynamics in human airways. A pre operative patient specific geometry was used to create an identical experimental and numerical model. The experimental results obtained from Particle Image Velocimetry (PIV) measurements were compared to Computational Fluid Dynamics (CFD) simulations under stationary and pulsatile flow regimes. Together these results constitute the first step in predicting the clinical outcome of patients after lung surgeries such as Lung Volume Reduction.


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 143
Author(s):  
Yorgos G. Stergiou ◽  
Aggelos T. Keramydas ◽  
Antonios D. Anastasiou ◽  
Aikaterini A. Mouza ◽  
Spiros V. Paras

The study of hemodynamics is particularly important in medicine and biomedical engineering as it is crucial for the design of new implantable devices and for understanding the mechanism of various diseases related to blood flow. In this study, we experimentally identify the cell free layer (CFL) width, which is the result of the Fahraeus–Lindqvist effect, as well as the axial velocity distribution of blood flow in microvessels. The CFL extent was determined using microscopic photography, while the blood velocity was measured by micro-particle image velocimetry (μ-PIV). Based on the experimental results, we formulated a correlation for the prediction of the CFL width in small caliber (D < 300 μm) vessels as a function of a modified Reynolds number (Re∞) and the hematocrit (Hct). This correlation along with the lateral distribution of blood viscosity were used as input to a “two-regions” computational model. The reliability of the code was checked by comparing the experimentally obtained axial velocity profiles with those calculated by the computational fluid dynamics (CFD) simulations. We propose a methodology for calculating the friction loses during blood flow in μ-vessels, where the Fahraeus–Lindqvist effect plays a prominent role, and show that the pressure drop may be overestimated by 80% to 150% if the CFL is neglected.


2011 ◽  
Vol 391-392 ◽  
pp. 1464-1468
Author(s):  
Chang Chun Duan ◽  
Chun Jiang Liu ◽  
Xi Gang Yuan

Present work deals with the optimization for flow pattern of continuous phase in a sieve plate extraction column using both computational fluid dynamics (CFD) simulations and particle image velocimetry (PIV) measurements. Firstly single-phase simulation was conducted for the traditional column and it was found that there was a very large reverse flow area between every two plates. Then step by step, by changing the downcomer structure, consisting of inclining downcomers, adding baffles, slotting downcomers and baffles and adjusting the number and size of slots, the reverse flow area was decreased and thereby the flow pattern of continuous phase was optimized. Finally, an optimal flow pattern was obtained with reverse flow area greatly reduced. In order to prove the validity of the simulation results, PIV experiments of two columns were carried out and it was found that the results of simulations and experiments are in good agreement.


2008 ◽  
Vol 35 (9) ◽  
pp. 975-986 ◽  
Author(s):  
M. Salih Kirkgoz ◽  
M. Sami Akoz ◽  
A. Alper Oner

Using the particle image velocimetry (PIV) technique, the laboratory experiments are conducted to measure the velocity fields of two-dimensional turbulent free surface flows upstream of rectangular and triangular broad-crested weirs. The experimental flow cases are analyzed theoretically by a computational fluid dynamics (CFD) modeling in which the finite element method is used to solve the governing equations. In the CFD simulation, the volume of fluid (VOF) method is used to compute the free surfaces of the flows. Using the standard k–ε and standard k–ω turbulence models, the numerical results for the velocity fields and flow profiles are compared with the experimental results for validation purposes. The computed results using k–ω turbulence model on compressed mesh systems are found in good agreement with measured data. The flow cases are also analyzed theoretically using the potential flow (PF) approach, and the numerical results for the velocity fields are compared with measurements.


2010 ◽  
Vol 132 (7) ◽  
Author(s):  
Suhas V. Patankar

This paper deals with the distribution of airflow and the resulting cooling in a data center. First, the cooling challenge is described and the concept of a raised-floor data center is introduced. In this arrangement, cooling air is supplied through perforated tiles. The flow rates of the cooling air must meet the cooling requirements of the computer servers placed next to the tiles. These airflow rates are governed primarily by the pressure distribution under the raised floor. Thus, the key to modifying the flow rates is to influence the flow field in the under-floor plenum. Computational fluid dynamics (CFD) is used to provide insight into various factors affecting the airflow distribution and the corresponding cooling. A number of ways of controlling the airflow distribution are explored. Then attention is turned to the above-floor space, where the focus is on preventing the hot air from entering the inlets of computer serves. Different strategies for doing this are considered. The paper includes a number of comparisons of measurements with the results of CFD simulations.


Author(s):  
Bülent Düz ◽  
Jule Scharnke ◽  
Rink Hallmann ◽  
Jan Tukker ◽  
Siddhant Khurana ◽  
...  

Abstract The kinematics under spilling and plunging breakers are investigated using both experimental and numerical methods. In a modular laboratory flume, the breakers were generated using dispersive focusing, and the kinematics underneath them were measured utilizing the Particle Image Velocimetry (PIV) technique. Using the state-of-art high-speed video cameras and lasers, the kinematics were measured at a high sampling rate without needing phase-locked averaging. Afterwards, Computational Fluid Dynamics (CFD) simulations were carried out for comparison purposes. These simulations were run in single-phase using a finite-volume based Navier-Stokes solver with a piecewise-linear interface reconstruction scheme. The spilling and plunging breakers from the measurements were reconstructed in the computational domain using an iterative scheme. As a result a good match with the measured waves was obtained in the simulations. Results indicate that even though measured kinematics are somewhat higher than the simulated ones especially in the spilling and overturning regions, the CFD simulations can accurately capture the relevant details of the flow and produce reasonably accurate kinematics in comparison with the PIV results.


2000 ◽  
Author(s):  
Malcolm J. Andrews ◽  
David Zwick

Abstract Three-dimensional Computational Fluid Dynamics (CFD) simulations are presented for water spray cooling of a Phthalic Anhydride desublimer. The multiphase CFD modeling includes a fully coupled Eulerian/Lagrangian formulation for the carrier gas and water spray, and a quasi-steady model for the desublimation process. The use of a Lagrangian description for the spray enables a drop size distribution, but also necessitates running the simulation through the transient to obtain a steady operation result. The simulation has been used to study effect of drop size, spray dispersion and spray location/orientation.


Author(s):  
Kristopher Toussaint ◽  
Federico Torriano ◽  
Jean-Franc¸ois Morissette ◽  
Claude Hudon ◽  
Marcelo Reggio

In 2006, the first Computational Fluid Dynamics (CFD) simulations of the ventilation of specific hydro-generator components were performed at the Hydro-Que´bec Research Institute (IREQ) and lately the entire ventilation circuit is being investigated. Due to the complexity of flow calculations, a validation process is necessary and for this reason a 1:4 scale model of a hydro-generator has been built at IREQ to get experimental data by means of particle image velocimetry (PIV). This paper presents 2D and 3D simulation results for the scale model obtained with a commercial CFD code and addresses the challenges associated with the application of CFD to hydro-generators. In particular, the effect of rotor-stator interface (RSI) types and configuration is analyzed to determine the approach that best suits this application. Two-dimensional calculations show that the steady state multiple frames of reference (MFR) solution is highly sensitive to the type (frozen rotor (FR) vs. mixing plane (MP)) and location of the RSI. A parametric study is performed where each interface configuration is compared to the transient case results. The MFR-FR interface model produces results that may vary significantly depending on the relative rotor position and the radial location of the RSI in the air gap. The MFR-MP interface model appears to be more coherent with reference values obtained from a transient case, since the radial velocity profiles in the stator are similar. Furthermore with an appropriate radial positioning of the interface, the windage losses are within 20%. Simulations of the complete 3D ventilation circuit revealed a maximum variation of 10% in both total ventilation flow rate and total windage losses, between the RSI configurations studied. However, the relative flow distributions, normalized with respect to the total flow rate, are unaffected by changes in RSI configuration. This paper focuses mainly on sensitivity studies to numerical settings, but this comparison still requires experimental validation before any final conclusions can be made.


2018 ◽  
Vol 18 (5) ◽  
pp. 1518-1530 ◽  
Author(s):  
Jie Zhang ◽  
Tien Yee

Abstract Flow near pump intakes is three-dimensional in nature, and is affected by many factors such as the geometry of the intake bay, uniformity of approach flow, critical submergence, placements and operation combinations of pumps and so on. In the last three decades, advancement of numerical techniques coupled with the increase in computational resources made it possible to conduct computational fluid dynamics (CFD) simulations on pump intakes. This article reviews different aspects involved in CFD modeling of pump station intakes, outlines the challenges faced by current CFD modelers, and provides an attempt to forecast future direction of CFD modeling of pump intakes.


Sign in / Sign up

Export Citation Format

Share Document