Accessible Modeling of the German Energy Transition: An Open, Compact, and Validated Model

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8084
Author(s):  
Julia Barbosa ◽  
Christopher Ripp ◽  
Florian Steinke

We present an easily accessible model for dispatch and expansion planning of the German multi-modal energy system from today until 2050. The model can be used with low efforts while comparing favorably with historic data and other studies of future developments. More specifically, the model is based on a linear programming partial equilibrium framework and uses a compact set of technologies to ease the comprehension for new modelers. It contains all equations and parameters needed, with the data sources and model assumptions documented in detail. All code and data are openly accessible and usable. The model can reproduce today’s energy mix and its CO2 emissions with deviations below 10%. The generated energy transition path, for an 80% CO2 reduction scenario until 2050, is consistent with leading studies on this topic. Our work thus summarizes the key insights of previous works and can serve as a validated and ready-to-use platform for other modelers to examine additional hypotheses.

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 98
Author(s):  
Cristobal Gallego-Castillo ◽  
Marta Victoria

Reservoir and pumped hydro storage facilities represent one of the best options for providing flexibility at low marginal cost and very low life cycle carbon emissions. However, hydropower generation is subject to physical, environmental and regulatory constraints, which introduce complexity in the modelling of hydropower in the context of transition energy analysis. In this article, a probabilistic model for hydropower generation is developed in order to improve an hourly-resolved tool for transition path analysis presented in previous research. The model is based on time series analysis, which exploits the fact that the different constraints affecting hydropower generation were met in the past. The upgraded version of the transition path analysis tool shows a decrease in the hydropower flexibility as compared with previous published results, providing a better picture of the benefits and drawbacks associated with a specific transition path under analysis, for example in terms of assessing the probability of unserved energy. The upgraded version of the tool was employed to analyse the Spanish National Energy and Climate Plan (NECP), finding consistence between proposals associated with the power system and related CO2 reduction and share of renewable electricity targets.


2021 ◽  
Author(s):  
Philip Ulrich ◽  
Tobias Naegler ◽  
Lisa Becker ◽  
Ulrike Lehr ◽  
Sonja Simon ◽  
...  

Abstract BackgroundMany different strategies have already been proposed for the transformation of the energy system in Germany. To evaluate their sustainability, it is necessary to analyze their macroeconomic and distributional effects. An approach to do this in an integrated and consistent framework is presented here. MethodsThe comparison of ten energy transition scenarios with emission reduction targets by 2050 of 80% or 95%, respectively, allows the evaluation across a broad range of different strategies with respect to the future technology and energy carrier mix. For this purpose, an energy system model and a macroeconometric model are combined, thus re-modeling the unified scenarios. An important extension of the model was concerned with the integration of synthetic fuels into the energy-economy model. One focus besides the overall macroeconomic assessment is the regional analysis. For this purpose, own assumptions on the regional distribution of the expansion of renewable energies were developed. ResultsThe effects on gross domestic product (GDP) and employment are similar in average from 2030 to 2050 between the scenarios, with most of the more ambitious scenarios showing slightly higher results for the socioeconomic variables. Sectorally, employment in the construction sector shows the largest effects in most scenarios, while in the energy sector employment is lower in scenarios with high energy imports. At the regional level, the differences between scenarios are larger than at national level. There is no clear or stable regional pattern of relative loss and profit from very ambitious transformation, as not only RE expansion varies and hydrogen strategies enter the scene approaching 2050.ConclusionsFrom the relatively small differences between the scenarios it can be concluded that, from a macroeconomic perspective, it is not decisive for the overall economy which (supply side) strategy is chosen for the transformation of the energy system. More effort needs to be put into improving assumptions and modeling approaches related to strategies for achieving the final 20% CO2 reduction, for example the increasing use of hydrogen.


2021 ◽  
Vol 13 (11) ◽  
pp. 5861
Author(s):  
Marianne Pedinotti-Castelle ◽  
Pierre-Olivier Pineau ◽  
Kathleen Vaillancourt ◽  
Ben Amor

Transportation is a key factor in the fight against climate change. Consumer behavior changes in transportation are underrepresented in energy policies, even if they could be essential to achieve the fixed GHG emission reduction targets. To help quantify the role of behaviors in energy transition and their implications on the dynamics of an energy system, this study is conducted using the North American TIMES Energy Model, adapted to Quebec (Canada). A behavioral disruption scenario (an increase in carpooling) is introduced in the model’s transportation sector and is compared to a massive electrification scenario. Our results highlight the fact that a behavioral disruption can lead to the same GHG emission reductions (65%) by 2050 as an electrification policy, while alleviating different efforts (such as additional electrical capacity and additional costs) associated with massive electrification. Moreover, the results are sensitive to behavior-related parameters, such as social discount rates and car lifetimes.


2021 ◽  
pp. 1-25
Author(s):  
Anne Kallies

Abstract The law and regulation of the energy sector in Australia is subject to overlapping responsibilities of both federal and state governments. Crucially for energy transition efforts, neither energy, environment nor climate is mentioned in the Australian Constitution. Australia has a tradition of creative cooperative federalism solutions for responding to problems of national importance. In the energy sector this has resulted in an intricate national framework for energy markets, which relies on mirror legislation passed by participating states, with oversight by state and federal executive governments. Independently of these frameworks, both federal and state governments have passed climate change legislation, which crucially includes renewable energy support mechanisms. At a time when a rapid transition to a decarbonized energy system is essential, legal frameworks struggle to respond in a timely fashion. The political discourse around energy has become increasingly toxic – reflecting a dysfunctional state–federal relationship in energy and climate law. Australia needs to consider whether its cooperative federalism solutions are sufficient to support the energy transition and how climate law at the state and federal levels interacts with energy market legal frameworks.


2021 ◽  
Author(s):  
Osamah Alsayegh

Abstract This paper examines the energy transition consequences on the oil and gas energy system chain as it propagates from net importing through the transit to the net exporting countries (or regions). The fundamental energy system security concerns of importing, transit, and exporting regions are analyzed under the low carbon energy transition dynamics. The analysis is evidence-based on diversification of energy sources, energy supply and demand evolution, and energy demand management development. The analysis results imply that the energy system is going through technological and logistical reallocation of primary energy. The manifestation of such reallocation includes an increase in electrification, the rise of energy carrier options, and clean technologies. Under healthy and normal global economic growth, the reallocation mentioned above would have a mild effect on curbing the oil and gas primary energy demands growth. A case study concerning electric vehicles, which is part of the energy transition aspect, is presented to assess its impact on the energy system, precisely on the fossil fuel demand. Results show that electric vehicles are indirectly fueled, mainly from fossil-fired power stations through electric grids. Moreover, oil byproducts use in the electric vehicle industry confirms the reallocation of the energy system components' roles. The paper's contribution to the literature is the portrayal of the energy system security state under the low carbon energy transition. The significance of this representation is to shed light on the concerns of the net exporting, transit, and net importing regions under such evolution. Subsequently, it facilitates the development of measures toward mitigating world tensions and conflicts, enhancing the global socio-economic wellbeing, and preventing corruption.


Author(s):  
Luigi Bottecchia ◽  
Pietro Lubello ◽  
Pietro Zambelli ◽  
Carlo Carcasci ◽  
Lukas Kranzl

Energy system modelling is an essential practice to assist a set of heterogeneous stakeholders in the process of defining an effective and efficient energy transition. From the analysis of a set of open source energy system models, it has emerged that most models employ an approach directed at finding the optimal solution for a given set of constraints. On the contrary, a simulation model is a representation of a system that is used to reproduce and understand its behaviour under given conditions, without seeking an optimal solution. Given the lack of simulation models that are also fully open source, in this paper a new open source energy system model is presented. The developed tool, called Multi Energy Systems Simulator (MESS), is a modular, multi-node model that allows to investigate non optimal solutions by simulating the energy system. The model has been built having in mind urban level analyses. However, each node can represent larger regions allowing wider spatial scales to be be represented as well. MESS is capable of performing analysis on systems composed by multiple energy carriers (e.g. electricity, heat, fuels). In this work, the tool’s features will be presented by a comparison between MESS itself and an optimization model, in order to analyze and highlight the differences between the two approaches, the potentialities of a simulation tool and possible areas for further development.


2020 ◽  
Vol 11 (1) ◽  
pp. 39-53
Author(s):  
Andrea Zatti

Environmental taxes and subsidies are considered by the economic theory as useful policy instruments to enhance environmental protection, improve the alignment of prices with full social costs, and encourage sustainable modes of consumption and production. In a policy-oriented perspective, the issue of reforming the financial system in an environmental perspective has attracted increasing attention to the international and European agenda in recent decades. Despite these premises, the actual implementation of environmental fiscal reforms (EFRs) has often lagged behind their full potential and premises. This paper analyzes environmental taxes and subsidies applied in Italy in the last decades to identify priorities, opportunities, and barriers to future developments. Data collected in the main national data sources and reports, as the recently established Catalogue of Environmentally Harmful Subsidies (EHSs) and environmentally friendly subsidies (EFSs), reveal how the implementation and design of taxes and subsidies have been, and still are, mainly driven by non-environmental objectives, leading to mixed and not completely satisfactory effects. In conclusion, relying on these results, some key elements – transparency, graduality, and predictability – may help to overcome the existing barriers to implement and achieve a broader and comprehensive EFR in Italy.


Sign in / Sign up

Export Citation Format

Share Document