scholarly journals CFD Study on the Ventilation Effectiveness in a Public Toilet under Three Ventilation Methods

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8379
Author(s):  
Zhonghua Zhang ◽  
Lingjie Zeng ◽  
Huixian Shi ◽  
Hua Liu ◽  
Wenjun Yin ◽  
...  

The indoor air quality (IAQ) of severely polluted toilets is associated with the transmission of diseases. Computational fluid dynamics (CFD) methods and experimental measurements were used to analyze the diffusion characteristics of pollutants. This study investigated the diffusion characteristics and normalized concentration of ammonia and hydrogen sulfide pollutants under three ventilation systems—mixing ventilation (MV), personalized ventilation (PV), and impinging jet ventilation (IJV)—in a public toilet. The mean age of air (MAA) and air exchange efficiency (AEE) were also analyzed in our study. The results show that the MV scheme has a poor removal effect on pollutants compared with PV and IJV. IJV has advantages in reducing the normalized concentration of pollutants and improving the IAQ. Increasing the number of air changes per hour (ACH) may lead to a longer MAA and reduced air exchange efficiency. Choosing an appropriate number of air changes is very important to improve the IAQ in the toilet.

2020 ◽  
pp. 1420326X2096076
Author(s):  
Pedro F. Pereira ◽  
Nuno M. M. Ramos

In Portugal, residential buildings commonly have their ventilation strategy changed after commissioning. This occurs due to the building managers' willingness to reduce shared costs with the electricity needed for fan operation. However, this option is not technically supported, and the effects of such a strategy on indoor air quality-related to human pollutants are yet to be quantified. CO2 was monitored in 15 bedrooms and air exchange rates were calculated for each room. The air exchange rate values ranged from 0.18 to 0.53 h−1 when mechanical extraction ventilation was off, and from 0.45 to 0.90 h−1 when mechanical extraction ventilation was on, which represents an average increase of 119%. With the current intermittent ventilation strategy, all rooms remain above 1500 ppm for a given percentage of time, and 12 rooms presenting CO2 concentrations above 2000 ppm. Simulations of theoretical CO2 concentrations, for a non-interrupted mechanical ventilation strategy show that no rooms would accumulate CO2 concentrations above 2000 ppm, and only 25% would present CO2 concentrations above 1500 ppm. Pearson correlations between the monitored CO2 and human and spatial factors identified two relevant parameters. Those parameters correspond to ratios between CO2 generation and floor area ([Formula: see text]), and airflow with CO2 generation ([Formula: see text]). The proposed ratios could be used as ways to optimise ventilation costs and indoor air quality.


2013 ◽  
Vol 368-370 ◽  
pp. 599-602 ◽  
Author(s):  
Ian Hung ◽  
Hsien Te Lin ◽  
Yu Chung Wang

This study focuses on the performance of air conditioning design at the Dazhi Cultural Center and uses a computational fluid dynamics (CFD) simulation to discuss the differences in wind velocity and ambient indoor temperature between all-zone air conditioning design and stratified air conditioning design. The results have strong implications for air conditioning design and can improve the indoor air quality of assembly halls.


1996 ◽  
Vol 118 (3) ◽  
pp. 529-535 ◽  
Author(s):  
P. W. Giel ◽  
J. R. Sirbaugh ◽  
I. Lopez ◽  
G. J. Van Fossen

Experimental measurements in the inlet of a transonic turbine blade cascade showed unacceptable pitchwise flow nonuniformity. A three-dimensional, Navier–Stokes computational fluid dynamics (CFD) analysis of the imbedded bellmouth inlet in the facility was performed to identify and eliminate the source of the flow nonuniformity. The blockage and acceleration effects of the blades were accounted for by specifying a periodic static pressure exit condition interpolated from a separate three-dimensional Navier–Stokes CFD solution of flow around a single blade in an infinite cascade. Calculations of the original inlet geometry showed total pressure loss regions consistent in strength and location to experimental measurements. The results indicate that the distortions were caused by a pair of streamwise vortices that originated as a result of the interaction of the flow with the imbedded bellmouth. Computations were performed for an inlet geometry that eliminated the imbedded bellmouth by bridging the region between it and the upstream wall. This analysis indicated that eliminating the imbedded bellmouth nozzle also eliminates the pair of vortices, resulting in a flow with much greater pitchwise uniformity. Measurements taken with an installed redesigned inlet verify that the flow nonuniformity has indeed been eliminated.


Author(s):  
M. F. Mohamed ◽  
M. Behnia ◽  
S. King ◽  
D. Prasad

Cross ventilation is a more effective ventilation strategy in comparison to single-sided ventilation. In the NSW Residential Flat Design Code1 (RFDC) the majority of apartments are required to adopt cross ventilation. However, in the case of studio and one-bedroom apartments, it is acknowledged that single-sided ventilation may prevail. Deep plan studio and one-bedroom apartments may achieve lower amenity of summer thermal comfort and indoor air quality where mechanical ventilation is not provided by air conditioning. Since compliance with the code may allow up to 40% of apartments in a development in Sydney to be single sided, it is important to understand the natural ventilation performance of such apartments. The objective of this paper is to investigate the natural ventilation potential in single-sided ventilated apartments to improve indoor air quality and thermal comfort. This investigation includes simulating various facade treatments involving multiple opening and balcony configurations. Balcony configurations are included in this study because, in Sydney, a balcony is a compulsory architectural element in any apartment building. The study uses computational fluid dynamics (CFD) software to simulate and predict the ventilation performance of each apartment configuration. This study suggests that properly configured balconies and openings can significantly improve indoor ventilation performance for enhanced indoor air quality and thermal comfort, by optimizing the available prevailing wind. However, it is important to note that inappropriately designed fac¸ade treatments also could diminish natural ventilation performance.


2014 ◽  
Vol 29 (suppl.) ◽  
pp. 52-58
Author(s):  
Franz Roessler ◽  
Jai Azzam ◽  
Volker Grimm ◽  
Hans Hingmann ◽  
Tina Orovwighose ◽  
...  

The energy conservation regulation provides upper limits for the annual primary energy requirements for new buildings and old building renovation. The actions required could accompany a reduction of the air exchange rate and cause a degradation of the indoor air quality. In addition to climate and building specific aspects, the air exchange rate is essentially affected by the residents. Present methods for the estimation of the indoor air quality can only be effected under test conditions, whereby the influence of the residents cannot be considered and so an estimation under daily routine cannot be ensured. In the context of this contribution first steps of a method are presented, that allows an estimation of the progression of the air exchange rate under favourable conditions by using radon as an indicator. Therefore mathematical connections are established that could be affirmed practically in an experimental set-up. So this method could provide a tool that allows the estimation of the progression of the air exchange rate and in a later step the estimation of a correlating progression of air pollutant concentrations without limitations of using the dwelling.


2021 ◽  
Vol 39 (3) ◽  
pp. 963-968
Author(s):  
Rabi Rabi ◽  
Lhoucine Oufni ◽  
El-Hocine Youssoufi ◽  
Khamiss Cheikh ◽  
Hamza Badry ◽  
...  

Radon natural is the main cause of lung cancer in non-smokers. Therefore, the study of the behavior of radon and its descendants in indoor air is of the highest importance, in order to limit the risk of radiation dose due to inhalation of radon by members of the public. This article focuses to study the effects of meteorological parameters on the concentration and distribution of radon in a traditional hammam by both numerical simulations and experiments. The results of the numerical simulations are qualitative and show that the concentration and distribution of radon decrease when the ventilation rate increase, as well as, when the temperature increases, however, it increases with the increase in relative humidity. The results obtained by the numerical simulations were in agreement with those obtained experimentally with a maximum deviation of 7%. Numerical simulations allow a better estimate of the distribution of radon in indoor air.


2020 ◽  
Vol 8 (2) ◽  
pp. 61-67
Author(s):  
Nurul Bahiyah Abd Wahid ◽  
Intan Idura Mohamad Isa ◽  
Ahmad Khairuddin Hassan ◽  
Muhammad Izzat Iman Razali ◽  
Ahmad Haziq Hasrizal ◽  
...  

This study aims to determine the particulate matter (PM2.5) mass concentrations and the comfort parameters (total bacterial counts (TBC), total fungal counts (TFC), relative humidity and temperature) in a university building. The samplings were carried out in three different indoor areas, including lecture hall, laboratory and lecturer office. PM2.5 samples were collected over a period of 8 h sampling using a low volume sampler (LVS). The anemometer Model Kestrel 0855YEL was used to measure relative humidity and temperature parameters. The sampling of airborne microorganisms was conducted by using microbial sampler at 350 L air sampled volume. The results showed that the highest average of PM2.5 was at lecture hall (88.54 ± 26.21 µgm-3) followed by lecturer office (69.79 ± 19.06 µgm-3) and laboratory (47.92 ± 24.88 µgm-3). The mean of TBC and TFC readings recorded as follow; 32.71 ± 5.91 cfu m-3 and 76.71 ± 21.5 cfu m-3 for laboratory, 112.1 ± 29.06 cfu m-3 and 124.67 ± 23.35 cfu m-3 for lecturer office, 121.74 ± 19.33 cfu m-3 and 115.33 ± 8.08 cfu m-3 for lecture hall. The average of all comfort parameter was within the prescribed standard by Industry Code of Practice on Indoor Air Quality 2010 for all sampling sites. Therefore, all occupants of the building can work in a conducive and comfortable environment. This study is in line with the objectives of National Policy on the Environment (DASN), which focusing on achieving a clean, safe, healthy and productive environment for present and future generations.


2020 ◽  
pp. 46-53
Author(s):  
Jakub Mularski ◽  
Amit Arora ◽  
Muhammad Azam Saeed ◽  
Łukasz Niedźwiecki ◽  
Samrand Saeidi

The paper regards the impact of four different turbulence models on the air flow pattern in a confined rectangular space. The following approaches are analyzed. The Baseline (BSL) Reynolds model, the Speziale-Sarkar-Gatzki (SSG) Reynolds model, the Menter's shear-stress transport (SST) model and the basic k-ε model. Computational fluid dynamics (CFD) results are compared with the experimental measurements in four different planes. The Reynolds number for the given conditions is equal to 5000. The k-ε model yielded the most accurate results with regard to the experimental data but its reliability decreased near the wall region. With respect to the other models, it was also found that the k-ε approach generated the least circulating flow.


2015 ◽  
Vol 157 (B2) ◽  
Author(s):  
M Ferrando ◽  
S Gaggero ◽  
D Villa

In recent years, the application of Computational Fluid Dynamics (CFD) methods experienced an exponential growth: the increase of the computational performances and the generalization of the Navier-Stokes equation to more complex physical problems made possible the solution of complex problems like free surfaces flows. The physical complexity of planing hulls flows poses some issues in the ability to numerically predict the global hydrodynamic parameters (hull resistance, dynamic attitude) of these configurations and on the expected confidence on the numerical results. In the last decade, commercial RANS software have been successfully applied for the prediction of the planing hull characteristics with reasonable correlation to the available experimental measurements. Recently, moreover, the interest in Open Source approaches, also for the solution of engineering problems, has rapidly grow. In this work, a set of calculations on a systematic series standard hull shape has been carried out, adopting from pre- to post- processing only Open Source tools. The comparison and the validation, through the available experimental measurements, of the computed results will define an optimal simulation strategy to include this kind of tools in the usual design loop.


Sign in / Sign up

Export Citation Format

Share Document