scholarly journals Making School-Based GHG-Emissions Tangible by Student-Led Carbon Footprint Assessment Program

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8558
Author(s):  
Oliver Wagner ◽  
Lena Tholen ◽  
Lotte Nawothnig ◽  
Sebastian Albert-Seifried

Schools play an important role in achieving climate protection goals, because they lay the foundation of knowledge for a responsible next generation. Therefore, schools as institutions have a special role model function. Enabling schools to become aware of their own carbon footprint (CF) is an important prerequisite for being able to tap the substantial CO2 reduction potential. Aiming at the direct involvement of students in the assessment process, a new assessment tool was developed within the Schools4Future project that gives students the opportunity to determine their own school’s CF. With this instrument the CO2 emissions caused by mobility, heating and electricity consumption as well as for food in the school canteen and for consumables (paper) can be recorded. It also takes into account existing renewable energy sources. Through the development of the tool, not only a monitoring instrument was established but also a concrete starting point from which students could take actions to reduce Greenhouse Gas (GHG) emissions. This paper presents the tool and its methods used to calculate the CF and compares it with existing approaches. A comparative case study of four pilot schools in Germany demonstrates the practicability of the tool and reveals fundamental differences between the GHG emissions.

2021 ◽  
Author(s):  
◽  
Florian Holder

<p>This dissertation will show why Germany is overall on a better way to deliver secure and sustainable electricity to its population at the moment. Though, New Zealand had the better starting point, it missed important steps in the development. However, “of the industrial countries, Germany is leading with regard to new renewable energy sources, occupying one of the first ranks in terms of wind energy capacity and photovoltaics”. Its legislation on this area with the core the Renewable Sources Act is a role model for many countries. And Germany’s Integrated Energy and Climate Programme seems promising that Germany will continue to have innovative and exemplary measures on the renewable energy sector. However, the history and development of New Zealand’s electricity market has shown that its government can correct wrong decisions and react fast and forcefully. The New Zealand Energy Strategy and the New Zealand Efficiency and Conservation Strategy have been first steps in the right direction. An important sign for New Zealand’s electricity industry would be the National Policy Statement for Renewable Electricity Generation.</p>


2021 ◽  
Author(s):  
◽  
Florian Holder

<p>This dissertation will show why Germany is overall on a better way to deliver secure and sustainable electricity to its population at the moment. Though, New Zealand had the better starting point, it missed important steps in the development. However, “of the industrial countries, Germany is leading with regard to new renewable energy sources, occupying one of the first ranks in terms of wind energy capacity and photovoltaics”. Its legislation on this area with the core the Renewable Sources Act is a role model for many countries. And Germany’s Integrated Energy and Climate Programme seems promising that Germany will continue to have innovative and exemplary measures on the renewable energy sector. However, the history and development of New Zealand’s electricity market has shown that its government can correct wrong decisions and react fast and forcefully. The New Zealand Energy Strategy and the New Zealand Efficiency and Conservation Strategy have been first steps in the right direction. An important sign for New Zealand’s electricity industry would be the National Policy Statement for Renewable Electricity Generation.</p>


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 351
Author(s):  
Bernardo Martin-Gorriz ◽  
Victoriano Martínez-Alvarez ◽  
José Francisco Maestre-Valero ◽  
Belén Gallego-Elvira

Curbing greenhouse gas (GHG) emissions to combat climate change is a major global challenge. Although irrigated agriculture consumes considerable energy that generates GHG emissions, the biomass produced also represents an important CO2 sink, which can counterbalance the emissions. The source of the water supply considerably influences the irrigation energy consumption and, consequently, the resulting carbon footprint. This study evaluates the potential impact on the carbon footprint of partially and fully replacing the conventional supply from Tagus–Segura water transfer (TSWT) with desalinated seawater (DSW) in the irrigation districts of the Segura River basin (south-eastern Spain). The results provide evidence that the crop GHG emissions depend largely on the water source and, consequently, its carbon footprint. In this sense, in the hypothetical scenario of the TSWT being completely replaced with DSW, GHG emissions may increase by up to 50% and the carbon balance could be reduced by 41%. However, even in this unfavourable situation, irrigated agriculture in the study area could still act as a CO2 sink with a negative total and specific carbon balance of −707,276 t CO2/year and −8.10 t CO2/ha-year, respectively. This study provides significant policy implications for understanding the water–energy–food nexus in water-scarce regions.


2021 ◽  
Vol 13 (13) ◽  
pp. 7025
Author(s):  
Shiva Gorjian ◽  
Behnam Hosseingholilou ◽  
Laxmikant D. Jathar ◽  
Haniyeh Samadi ◽  
Samiran Samanta ◽  
...  

The food industry is responsible for supplying the food demand of the ever-increasing global population. The food chain is one of the major contributors to greenhouse gas (GHG) emissions, and global food waste accounts for one-third of produced food. A solution to this problem is preserving crops, vegetables, and fruits with the help of an ancient method of sun drying. For drying agricultural and marine products, several types of dryers are also being developed. However, they require a large amount of energy supplied conventionally from pollutant energy sources. The environmental concerns and depletion risks of fossil fuels persuade researchers and developers to seek alternative solutions. To perform drying applications, sustainable solar power may be effective because it is highly accessible in most regions of the world. Greenhouse dryers (GHDs) are simple facilities that can provide large capacities for drying agricultural products. This study reviews the integration of GHDs with different solar technologies, including photovoltaic (PV), photovoltaic-thermal (PVT), and solar thermal collectors. Additionally, the integration of solar-assisted greenhouse dryers (SGHDs) with heat pumps and thermal energy storage (TES) units, as well as their hybrid configuration considering integration with other renewable energy sources, is investigated to improve their thermal performance. In this regard, this review presents and discusses the most recent advances in this field. Additionally, the economic analysis of SGHDs is presented as a key factor to make these sustainable facilities commercially available.


Author(s):  
Christian Böhmeke ◽  
Thomas Koch

AbstractThis paper describes the CO2 emissions of the additional electricity generation needed in Germany for battery electric vehicles. Different scenarios drawn up by the transmission system operators in past and for future years for expansion of the energy sources of electricity generation in Germany are considered. From these expansion scenarios, hourly resolved real-time simulations of the different years are created. Based on the calculations, it can be shown that even in 2035, the carbon footprint of a battery electric vehicle at a consumption of 22.5 kWh/100 km including losses and provision will be around 100 g CO2/km. Furthermore, it is shown why the often-mentioned German energy mix is not suitable for calculating the emissions of a battery electric vehicle fleet. Since the carbon footprint of a BEV improves significantly over the years due to the progressive expansion of renewable-energy sources, a comparison is drawn at the end of this work between a BEV (29.8 tons of CO2), a conventional diesel vehicle (34.4 tons of CO2), and a diesel vehicle with R33 fuel (25.8 tons of CO2) over the entire useful life.


2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
T Batool ◽  
A Neven ◽  
Y Vanrompay ◽  
M Adnan ◽  
P Dendale

Abstract Funding Acknowledgements Type of funding sources: Other. Main funding source(s): Special Research Fund (BOF), Hasselt University Introduction The transportation sector is one of the major sectors influencing climate change, contributing around 16% of total Greenhouse gases (GHG) emissions. Aviation contributes to 12% of the transport related emissions. Among other climate change impacts, elevated heat exposure is associated with increased cardiac events and exposure to air pollution caused by GHG emissions has also well-known association with increased cardiovascular related morbidity and mortality. The global temperature rise should be restricted to less than 2 °C which requires keeping carbon emission (CO2) less than 2900 billion tonnes by the end of the 21st century. Assuming air travel a major contributing source to GHG, this study aims to raise the awareness about potential carbon emissions reduction due to air travel of international events like a scientific conference. Purpose Due to the global pandemic of COVID-19, the Preventive cardiology conference 2020 which was planned to be held at Malaga Spain, instead was held in virtual online way. This study aims to calculate the contribution of reduced CO2  emissions in tons due to ESC preventive cardiology conference 2020, which was then held online and air travel of the registered participants was avoided. Methods Anonymized participant registration information was used to determine the country and city of the 949 registered participants of the Preventive Cardiology conference 2020. It is assumed that participants would have travelled from the closest airports from their reported city locations to Malaga airport, Spain. At first, the closest city airports were determined using Google maps and flights information, then the flight emissions (direct and indirect CO2-equivalent emissions) per passenger for the given flight distances were calculated. The CO2 emissions (tons) were calculated for round trips in economy class from the participants of 68 nationalities (excluding 60 participants from Spain as they are assumed to take other modes of transport than airplane). Results In total, 1156.51 tons of CO2  emissions were saved by turning the physical conference into a virtual event. This emission amount is equivalent to the annual CO2 production of 108 people living in high-income countries. Conclusion The pandemic situation has forced us to rethink the necessity of trips by air and has shown us the feasibility of digitally organized events. The information from this study can add to the awareness about reduced amount of carbon emission due to air travel by organizing events in a virtual way when possible. Apart from only digitally organized events there are others options to reduce the carbon footprint of conferences such as limiting the number of physical attendees, encouraging the use of relatively sustainable transport modes for participants from nearby countries (e.g. international trains and use of active transport modes at conference venue etc.) and including CO2 emission offsetting costs.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2212
Author(s):  
Ewelina Kochanek

The aim of the research is to analyse the energy transition in the Visegrad Group countries, because they depend on the production of energy from the burning of fossil fuels, and transition is a huge challenge for them. The diversity of the energy transformation in the V4 countries was examined by using two qualitative methods, including literature analysis and comparative analysis. The timeframe of the study was set for the period from 2020 to 2030, as these years are crucial for the implementation of the European Green Deal Programme. Four diagnostic features were taken into account in the analysis: the share of RES in final energy consumption, reduction of CO2 emissions in the non-Emissions Trading System (ETS) sector, date of withdrawal of coal from the economy, and energy efficiency. The analysis shows that the V4 countries have different approaches and levels of energy transformation in their economies. Poland is in the most difficult situation, being the most dependent on the production of electricity from coal, as well as having the largest number of employees in the coal and around coal sector. The other countries of the group can base their transformation on nuclear energy, as each of them has at least four such power units. The increased use of biomass for energy and heat production is the most important stimulus for Renewable Energy Sources (RES) growth in the analysed countries. The ambivalent attitude of the political elite to unconventional sources in the four analysed countries significantly hinders the development of certain forms of green energy. However, it has been observed that an increasing proportion of the population, especially those living in regions of the country where there is no fossil fuel mining industry, has a positive attitude towards energy transformation. The study is the first that shows the state of involvement in the process of systemic change of the Visegrad Group countries. The results can serve as a starting point for understanding the reticence of this group of European countries towards the transformation phenomenon, as well as contributing to further research on the implementation of closed-circuit economies in the Visegrad Group countries.


2021 ◽  
Vol 13 (4) ◽  
pp. 1795
Author(s):  
Pedro Dorta Antequera ◽  
Jaime Díaz Pacheco ◽  
Abel López Díez ◽  
Celia Bethencourt Herrera

Many small islands base their economy on tourism. This activity, based to a large extent on the movement of millions of people by air transport, depends on the use of fossil fuels and, therefore, generates a large amount of greenhouse gas (GHG) emissions. In this work, these emissions are evaluated by means of various carbon calculators, taking the Canary Islands as an example, which is one of the most highly developed tourist archipelagos in the world. The result is that more than 6.4 million tonnes (Mt) of CO2 are produced per year exclusively due to the massive transport of tourists over an average distance of more than 3000 km. The relative weight of these emissions is of such magnitude that they are equivalent to more than 50% of the total amount produced by the socioeconomic activity of the archipelago. Although, individually, it is travelers from Russia and Nordic countries who generate the highest carbon footprint due to their greater traveling distance, the British and German tourists account for the greatest weight in the total, with two-thirds of emissions.


2021 ◽  
Vol 9 (4) ◽  
pp. 415
Author(s):  
George Mallouppas ◽  
Elias Ar. Yfantis

This review paper examines the possible pathways and possible technologies available that will help the shipping sector achieve the International Maritime Organization’s (IMO) deep decarbonization targets by 2050. There has been increased interest from important stakeholders regarding deep decarbonization, evidenced by market surveys conducted by Shell and Deloitte. However, deep decarbonization will require financial incentives and policies at an international and regional level given the maritime sector’s ~3% contribution to green house gas (GHG) emissions. The review paper, based on research articles and grey literature, discusses technoeconomic problems and/or benefits for technologies that will help the shipping sector achieve the IMO’s targets. The review presents a discussion on the recent literature regarding alternative fuels (nuclear, hydrogen, ammonia, methanol), renewable energy sources (biofuels, wind, solar), the maturity of technologies (fuel cells, internal combustion engines) as well as technical and operational strategies to reduce fuel consumption for new and existing ships (slow steaming, cleaning and coating, waste heat recovery, hull and propeller design). The IMO’s 2050 targets will be achieved via radical technology shift together with the aid of social pressure, financial incentives, regulatory and legislative reforms at the local, regional and international level.


2021 ◽  
Vol 12 (3) ◽  
pp. 93
Author(s):  
Daniel Arturo Maciel Fuentes ◽  
Eduardo Gutiérrez González

In recent decades, urban air pollution has increased considerably in Mexico City, leading to harmful effects on the ecosystem. To reduce pollutant emissions, new sustainable technologies have been adopted in the transport sector. To date, no studies have conducted a technoeconomic analysis of the environmental impact of electric vehicles (EVs) in regard to taxis in Mexico. To address this gap in the research, this study aimed to perform a cost-environmental impact assessment of electric taxi introduction in Mexico City using the life-cycle cost (LCC) methodology and the greenhouse gas (GHG) emissions assessment. Furthermore, a sensitivity analysis was performed to identify parameters with the greatest influence on the LCC. The LCC of EVs was found to be larger than that of internal combustion vehicles (ICVs); the acquisition cost was identified as the greatest contributor to the total LCC, followed by the maintenance cost. Worldwide, mixed results have been reported due to differences in the use of local parameters and values. To promote EVs, it is necessary to reduce either acquisition costs or battery costs. The environmental analysis showed that there is only a slight reduction in GHG emissions with electric taxi introduction. Nevertheless, cleaner renewable energy sources must be adopted and considered in order to achieve a much greater reduction and take full advantage of the benefits of EVs.


Sign in / Sign up

Export Citation Format

Share Document