scholarly journals Decarbonization in Shipping Industry: A Review of Research, Technology Development, and Innovation Proposals

2021 ◽  
Vol 9 (4) ◽  
pp. 415
Author(s):  
George Mallouppas ◽  
Elias Ar. Yfantis

This review paper examines the possible pathways and possible technologies available that will help the shipping sector achieve the International Maritime Organization’s (IMO) deep decarbonization targets by 2050. There has been increased interest from important stakeholders regarding deep decarbonization, evidenced by market surveys conducted by Shell and Deloitte. However, deep decarbonization will require financial incentives and policies at an international and regional level given the maritime sector’s ~3% contribution to green house gas (GHG) emissions. The review paper, based on research articles and grey literature, discusses technoeconomic problems and/or benefits for technologies that will help the shipping sector achieve the IMO’s targets. The review presents a discussion on the recent literature regarding alternative fuels (nuclear, hydrogen, ammonia, methanol), renewable energy sources (biofuels, wind, solar), the maturity of technologies (fuel cells, internal combustion engines) as well as technical and operational strategies to reduce fuel consumption for new and existing ships (slow steaming, cleaning and coating, waste heat recovery, hull and propeller design). The IMO’s 2050 targets will be achieved via radical technology shift together with the aid of social pressure, financial incentives, regulatory and legislative reforms at the local, regional and international level.

2021 ◽  
Vol 33 (3) ◽  
pp. 463-477
Author(s):  
Luka Vukić ◽  
Giambattista Guidi ◽  
Tanja Poletan Jugović ◽  
Renato Oblak

Following the sustainable transport policy, environmental criteria are becoming a competitive factor within the maritime shipping industry. The use of greener fuels in internal combustion engines, including electric drive, is a measure that can reduce external costs of transport. Alternative fuels in maritime transport, benefits, and potential attainable savings have been examined on the Kamenari–Lepatane ro-ro ferry route in the Bay of Kotor located in Montenegro. The results indicate higher total fuel cost savings by switching to LNG compared with electric power. However, the external costs of the latter are considerably lower, especially using renewable energy sources rather than fossil ones in the production process. The results obtained, relative to the magnitude and assumed complete internalization of external costs, justify the incentive to use the renewable sources as energy providers on the examined ro-ro ferry route. Environmental criteria should play a decisive role in assessing the overall benefit value, under the current trends and regulations of emissions reduction in maritime transport.


Trudy NAMI ◽  
2022 ◽  
pp. 53-59
Author(s):  
A. N. Kozlov ◽  
M. I. Araslanov

Introduction (problem statement and relevance). The depletion of oil fuels reserves and the steady growth of their consumption will require new solutions in the development of technologies based on renewable energy sources. The study of the possible alternative fuels use in internal combustion engines is a complex scientific task, including the research of the alternative fuels effect on the power plants operation efficiency.The purpose of the study was to obtain the speed characteristics of a diesel engine operating on ethyl alcohol and rapeseed oil.Methodology and research methods. An air-cooled with volumetric mixture formation tractor diesel engine of dimension 2Ch 10.5/12.0 was selected as an object of research. The study was carried out by a comparative method. To measure the speed characteristic a fixed cyclic fuel supply was applied after the engine reaching the nominal operating mode at a crankshaft speed of 1800 min-1 and an average effective pressure in the cylinder of 0.588 MPa. This approach, with the all-mode regulator of the fuel pump turned off, made it possible to identify the main regularities of intra-cylinder processes at different speed modes of engine operation.Scientific novelty and results. The article presents the bench tests results of a diesel engine operating at various speed modes on ethanol and rapeseed oil, and analyzes in detail the main indicators of the combustion process and the effective engine performance in comparison to the use of traditional fuel. The practical significance lies in the possibility of using the obtained results to improve the diesel engines operation on alternative renewable fuels.


2020 ◽  
Vol 10 (2) ◽  
pp. 21 ◽  
Author(s):  
Roberto Leonardo Rana ◽  
Mariarosaria Lombardi ◽  
Pasquale Giungato ◽  
Caterina Tricase

The scarcity of fossil fuels and their environmental impact as greenhouse gas (GHG) emissions, have prompted governments around the world to both develop research and foster the use of renewable energy sources (RES), such as biomass, wind, and solar. Therefore, although these efforts represent potential solutions for fossil fuel shortages and GHG emission reduction, some doubts have emerged recently regarding their energy efficiency. Indeed, it is very useful to assess their energy gain, which means quantifying and comparing the amount of energy consumed to produce alternative fuels. In this context, the aim of this paper is to analyze the trend of the academic literature of studies concerning the indices of the energy return ratio (ERR), such as energy return on energy invested (EROEI), considering biomass, wind and solar energy. This could be useful for institutions and to public organizations in order to redefine their political vision for realizing sustainable socio-economic systems in line with the transition from fossil fuels to renewable energies. Results showed that biomass seems to be more expensive and less efficient than the equivalent fossil-based energy, whereas solar photovoltaic (PV) and wind energy have reached mature and advanced levels of technology.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5338
Author(s):  
Ronelly De Souza ◽  
Melchiorre Casisi ◽  
Diego Micheli ◽  
Mauro Reini

The energy transition towards a scenario with 100% renewable energy sources (RES) for the energy system is starting to unfold its effects and is increasingly accepted. In such a scenario, a predominant role will be played by large photovoltaic and wind power plants. At the same time, the electrification of energy consumption is expected to develop further, with the ever-increasing diffusion of electric transport, heat pumps, and power-to-gas technologies. The not completely predictable nature of the RES is their well-known drawback, and it will require the use of energy storage technologies, in particular large-scale power-to-chemical conversion and chemical-to-power re-conversion, in view of the energy transition. Nonetheless, there is a lack in the literature regarding an analysis of the potential role of small–medium CCHP technologies in such a scenario. Therefore, the aim of this paper is to address what could be the role of the Combined Heat and Power (CHP) and/or Combined Cooling Heat and Power (CCHP) technologies fed by waste heat within the mentioned scenario. First, in this paper, a review of small–medium scale CHP technologies is performed, which may be fed by low temperature waste heat sources. Then, a review of the 100% RE scenario studied by researchers from the Lappeenranta University of Technology (through the so-called “LUT model”) is conducted to identify potential low temperature waste heat sources that could feed small–medium CHP technologies. Second, some possible interactions between those mentioned waste heat sources and the reviewed CHP technologies are presented through the crossing data collected from both sides. The results demonstrate that the most suitable waste heat sources for the selected CHP technologies are those related to gas turbines (heat recovery steam generator), steam turbines, and internal combustion engines. A preliminary economic analysis was also performed, which showed that the potential annual savings per unit of installed kW of the considered CHP technologies could reach EUR 255.00 and EUR 207.00 when related to power and heat production, respectively. Finally, the perspectives about the carbon footprint of the CHP/CCHP integration within the 100% renewable energy scenario were discussed.


2019 ◽  
Vol 40 (1) ◽  
pp. 7
Author(s):  
Marcelo Silveira de Farias ◽  
José Fernando Schlosser ◽  
Javier Solis Estrada ◽  
Gismael Francisco Perin ◽  
Alfran Tellechea Martini

The growing global demand of energy, the decrease of petroleum reserves and the current of environmental contamination problems, make it imperative to study renewable energy sources for use in internal combustion engines, in order to decrease the dependence on fossil fuels and reduce emissions of pollutant gases. This study aimed to evaluate the emissions of a diesel-cycle engine of an agricultural tractor that uses diesel S500 (B5) mixed with 3, 6, 9, 12 and 15% of hydrous ethanol. It determined emissions of CO2 (ppm), NOx (ppm), and opacity (k value) of gases. A standard procedure was applied considering eight operating modes (M1, M2, M3, M4, M5, M6, M7, and M8) by breaking with an electric dynamometer in a laboratory. The experimental design was completely randomized, with 60 replicates and a 6 x 8 factorial design. Greater opacity and gas emissions were observed when the engine operated with 3% ethanol, while lower emissions occurred with 12 and 15%. With these fuels, the reduction of opacity, CO2, and NOx, in relation to diesel oil, was 24.49 and 26.53%, 4.96 and 5.15%, and 6.59 and 9.70%, respectively. In conclusion, the addition of 12 and 15% ethanol in diesel oil significantly reduces engine emissions.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1478
Author(s):  
Radoslaw Wrobel ◽  
Gustaw Sierzputowski ◽  
Zbigniew Sroka ◽  
Radostin Dimitrov

Alternative fuels appeared soon after the first internal combustion engines were designed. The history of alternative fuels is basically as long as the history of the automotive industry. Initially, fuels whose physicochemical properties allowed for a change in parameters of the combustion process in order to achieve greater efficiency and reliability were searched for. Nowadays, there are significantly more variables; in addition to the above mentioned parameters, alternative fuels are being sought that will ensure environmental protection during vehicle operation and improve the ergonomics of use. This article outlines the results of the authors’ own comparative tests of vibrations of a vibroacoustic character. Based on a popular engine model, the vibration–acoustic responses of a system powered by two types of fuel, namely, diesel and biodiesel (B10), are compared. The research consists of comparing vibrations in both time and frequency domains. In the case of the time domain, the evaluation was performed with vibrations as a function of engine torque and speed. In the case of frequency analysis, the focus was on changes in the frequency response for the tested fuels. The research shows that the profile of vibroacoustic vibrations changes in the case of biodiesel power supply in relation to standard fuel. The vibration profile changes significantly as a function of speed and only slightly in relation to the engine load. The results presented in this article show different vibroacoustic responses of an engine powered by diesel and biodiesel; the change is minor for lower speeds but significant (other harmonics are dominant) for higher speeds (changes in the dominant harmonic magnitude of up to 10% at a crankshaft speed of 3000 rpm).


2021 ◽  
Vol 13 (13) ◽  
pp. 7025
Author(s):  
Shiva Gorjian ◽  
Behnam Hosseingholilou ◽  
Laxmikant D. Jathar ◽  
Haniyeh Samadi ◽  
Samiran Samanta ◽  
...  

The food industry is responsible for supplying the food demand of the ever-increasing global population. The food chain is one of the major contributors to greenhouse gas (GHG) emissions, and global food waste accounts for one-third of produced food. A solution to this problem is preserving crops, vegetables, and fruits with the help of an ancient method of sun drying. For drying agricultural and marine products, several types of dryers are also being developed. However, they require a large amount of energy supplied conventionally from pollutant energy sources. The environmental concerns and depletion risks of fossil fuels persuade researchers and developers to seek alternative solutions. To perform drying applications, sustainable solar power may be effective because it is highly accessible in most regions of the world. Greenhouse dryers (GHDs) are simple facilities that can provide large capacities for drying agricultural products. This study reviews the integration of GHDs with different solar technologies, including photovoltaic (PV), photovoltaic-thermal (PVT), and solar thermal collectors. Additionally, the integration of solar-assisted greenhouse dryers (SGHDs) with heat pumps and thermal energy storage (TES) units, as well as their hybrid configuration considering integration with other renewable energy sources, is investigated to improve their thermal performance. In this regard, this review presents and discusses the most recent advances in this field. Additionally, the economic analysis of SGHDs is presented as a key factor to make these sustainable facilities commercially available.


Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 95
Author(s):  
Ghazal Makvandia ◽  
Md. Safiuddin

Efforts have been put in place to minimize the effects of construction activities and occupancy, but the problem of greenhouse gas (GHG) emissions continues to have detrimental effects on the environment. As an effort to reduce GHG emissions, particularly carbon emissions, countable commercial, industrial, institutional, and residential net-zero energy (NZE) buildings were built around the globe during the past few years, and they are still operating. But there exist many challenges and barriers for the construction of NZE buildings. This study identifies the obstacles to developing NZE buildings, with a focus on single-family homes, in the Greater Toronto Area (GTA). The study sought to identify the technical, organizational, and social challenges of constructing NZE buildings, realize the importance of the public awareness in making NZE homes, and provide recommendations on how to raise public knowledge. A qualitative approach was employed to collect the primary data through survey and interviews. The secondary data obtained from the literature review were also used to realize the benefits, challenges, and current situation of NZE buildings. Research results indicate that the construction of NZE buildings is faced with a myriad of challenges, including technical issues, the lack of governmental and institutional supports, and the lack of standardized measures. The public awareness of NZE homes has been found to be very low, thus limiting the uptake and adoption of the new technologies used in this type of homes. The present study also recommends that the government and the academic institutions should strive to support the NZE building technology through curriculum changes, technological uptake, and financial incentives to buyers and developers. The implementation of these recommendations may enhance the success and popularity of NZE homes in the GTA.


2021 ◽  
Vol 12 (3) ◽  
pp. 93
Author(s):  
Daniel Arturo Maciel Fuentes ◽  
Eduardo Gutiérrez González

In recent decades, urban air pollution has increased considerably in Mexico City, leading to harmful effects on the ecosystem. To reduce pollutant emissions, new sustainable technologies have been adopted in the transport sector. To date, no studies have conducted a technoeconomic analysis of the environmental impact of electric vehicles (EVs) in regard to taxis in Mexico. To address this gap in the research, this study aimed to perform a cost-environmental impact assessment of electric taxi introduction in Mexico City using the life-cycle cost (LCC) methodology and the greenhouse gas (GHG) emissions assessment. Furthermore, a sensitivity analysis was performed to identify parameters with the greatest influence on the LCC. The LCC of EVs was found to be larger than that of internal combustion vehicles (ICVs); the acquisition cost was identified as the greatest contributor to the total LCC, followed by the maintenance cost. Worldwide, mixed results have been reported due to differences in the use of local parameters and values. To promote EVs, it is necessary to reduce either acquisition costs or battery costs. The environmental analysis showed that there is only a slight reduction in GHG emissions with electric taxi introduction. Nevertheless, cleaner renewable energy sources must be adopted and considered in order to achieve a much greater reduction and take full advantage of the benefits of EVs.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1538
Author(s):  
Felipe Andrade Torres ◽  
Omid Doustdar ◽  
Jose Martin Herreros ◽  
Runzhao Li ◽  
Robert Poku ◽  
...  

The worldwide consumption of fossil hydrocarbons in the road transport sector in 2020 corresponded to roughly half of the overall consumption. However, biofuels have been discreetly contributing to mitigate gaseous emissions and participating in sustainable development, and thus leading to the extending of the commercial utilization of internal combustion engines. In this scenario, the present work aims at exploring the effects of alternative fuels containing a blend of 15% ethanol and 35% biodiesel with a 50% fossil diesel (E15D50B35) or 50% Fischer–Tropsch (F-T) diesel (E15FTD50B35) on the engine combustion, exhaust emissions (CO, HC, and NOx), particulate emissions characteristics as well as the performance of an aftertreatment system of a common rail diesel engine. It was found that one of the blends (E15FTD50B35) showed more than 30% reduction in PM concentration number, more than 25% reduction in mean particle size, and more than 85% reduction in total PM mass with respect to conventional diesel fuel. Additionally, it was found that the E15FTD50B35 blend reduces gaseous emissions of total hydrocarbons (THC) by more than 25% and NO by 3.8%. The oxidation catalyst was effective in carbonaceous emissions reduction, despite the catalyst light-off being slightly delayed in comparison to diesel fuel blends.


Sign in / Sign up

Export Citation Format

Share Document