scholarly journals Verification and Validation of CFD Modeling for Low-Flow-Coefficient Centrifugal Compressor Stages

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 181
Author(s):  
Vycheslav Ivanov ◽  
Yuri Kozhukhov ◽  
Aleksei Danilishin ◽  
Aleksey Yablokov ◽  
Michail Sokolov

In this paper, the numerical model of a centrifugal compressor low-flow stage is verified. The gaps and labyrinth seals were simulated in the numerical model. The task was to determine the optimal settings for high-quality modeling of the low-flow stages. The intergrid interface application issues, turbulence and roughness models are considered. The obtained numerical model settings are used to validate seven model stages for the range of the optimal conditional flow coefficient with Φopt = 0.008–0.018 and the conditional Mach number Mu = 0.785–0.804. The simulation results are compared with the experimental data. The high pressure stage-7 (HPS-7) stage with Φopt = 0.010 and Mu = 0.60 at different inlet pressure of 4, 10 and 40 atm is considered separately. Acceptable validation results are obtained with the recommended numerical model settings; the modeling uncertainty for the polytropic pressure coefficient δη*pol < 4% for the efficiency coefficient δη*pol exceeds the limit of 4% only in the two most low-flow stages, U and V.

2020 ◽  
Vol 10 (24) ◽  
pp. 9138
Author(s):  
Sergey Kartashov ◽  
Yuri Kozhukhov ◽  
Vycheslav Ivanov ◽  
Aleksei Danilishin ◽  
Aleksey Yablokov ◽  
...  

In this paper, we review the problem of accounting for heat exchange between the flow and the flow part surfaces when creating a calculation model for modeling the workflow process of low-flow stages of a centrifugal compressor using computational fluid dynamics (CFD). The objective selected for this study was a low-flow intermediate type stage with the conditional flow coefficient Փ = 0.008 and the relative width at the impeller exit b2/D2 = 0.0133. We show that, in the case of modeling with widespread adiabatic wall simplification, the calculated temperature in the gaps between the impeller and the stator elements is significantly overestimated. Modeling of the working process in the flow part was carried out with a coupled heat exchanger, as well as with simplified accounting for heat transfer by setting the temperatures of the walls. The gas-dynamic characteristics of the stage were compared with the experimental data, the heat transfer influence on the disks friction coefficient was estimated, and the temperature distributions in the gaps between disks and in the flow part of the stage were analyzed. It is shown that the main principle when modeling the flow in low-flow stage is to ensure correct temperature distribution in the gaps.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4292
Author(s):  
Kirill Kabalyk ◽  
Andrzej Jaeschke ◽  
Grzegorz Liśkiewicz ◽  
Michał Kulak ◽  
Tomasz Szydłowski ◽  
...  

The article describes an assessment of possible changes in constant fatigue life of a medium flow-coefficient centrifugal compressor impeller subject to operation at close-to-surge point. Some aspects of duct acoustics are additionally analyzed. The experimental measurements at partial load are presented and are primarily used for validation of unidirectionally coupled fluid-structural numerical model. The model is based on unsteady finite-volume fluid-flow simulations and on finite-element transient structural analysis. The validation is followed by the model implementation to replicate the industry-scale loads with reasonably higher rotational speed and suction pressure. The approach demonstrates satisfactory accuracy in prediction of stage performance and unsteady flow field in vaneless diffuser. The latter is deduced from signal analysis relying on continuous wavelet transformations. On the other hand, it is found that the aerodynamic incidence losses at close-to-surge point are underpredicted. The structural simulation generates considerable amounts of numerical noise, which has to be separated prior to evaluation of fluid-induced dynamic strain. The main source of disturbance is defined as a stationary region of static pressure drop caused by flow contraction at volute tongue and leading to first engine-order excitation in rotating frame of reference. Eventually, it is concluded that the amplitude of excitation is too low to lead to any additional fatigue.


2019 ◽  
Vol 140 ◽  
pp. 06010 ◽  
Author(s):  
Aleksey Yablokov ◽  
Ivan Yanin ◽  
Nikolay Sadovskyi ◽  
Yuri Kozhukhov ◽  
Minh Hai Nguyen

The study presents the simulation results of the viscid gas flow in low flow coefficient centrifugal compressor stages. The problem is solved in a stationary formulation using the Ansys CFX software package. The numerical simulation is carried out on three ultrahigh-pressure model stages; two stages have blades of the classical type impeller and one stage is of the bodily type. The value of the conditional flow coefficient is 0.0063 to 0.015. As part of the study, block-structured design meshes are used for all gas channel elements, with their total number being equaled as 13–15 million. During the calculations a numerical characteristic was validated with the results of tests carried out at the Department of Compressor, Vacuum and Refrigeration Engineering of Peter the Great St. Petersburg Polytechnic University. With an increase of inlet pressure as a result of a numerical study, it was found that for a given mathematical model the disk friction and leakage coefficient (1 + βfr + βlk) is overestimated. The analysis of flow in labyrinth seals has shown an increase of total temperature near the discs by 30–50 °С, nevertheless this fact did not influence gas parameters in the behind-the-rotor section. The calculation data obtained with finer design mesh (the first near-wall cell was 0.001 mm) is identical to those obtained with the first near-wall cell 0.01 mm mesh.


Author(s):  
Uday K. Meduri ◽  
Kathiravan Selvam ◽  
Gilles Nawrocki

A Centrifugal Compressor is a key component in the Oil and Gas Industry. It is used in all 3 areas of extraction, processing and transportation, namely, upstream, midstream and downstream. Generally a compressor’s life expectancy matches that of the wells it is used on. Barring retrofits and maintenance, a compressor can remain onsite for up to 20 years. However, at the end of the life of the well or in special conditions with perennial low flow rates, the reduced gas flow rate pushes the compressor to the left of its operating limit. At this point, the compressor surges. In order to bring it back to the normal operating conditions, flow is recirculated via an external circuit involving the anti-surge valve. This drops the flange to flange performance. A simpler method would be to recycle the flow internally, thus removing the losses from the external circuit. In this paper, internal flow recirculation is studied where flow is extracted from the stage diffuser and recycled back to the upstream return channel. This study was undertaken on a 2D impeller from the lowest flow coefficient stage of an OEM. Using 1D tools and detailed CFD methods to study this novel design, it is shown that the range can be shifted significantly.


Author(s):  
Zhiheng Wang ◽  
Liqun Xu ◽  
Guang Xi

The leakage flow across the shroud of a centrifugal compressor impeller has an important effect on the compressor’s performance, in particular, in the low flow coefficient compressor. This paper presents the three-dimensional CFD simulations and the Radial Basis Function (RBF) model to investigate the aerodynamic performance of the labyrinth seal as well as the low flow coefficient centrifugal impeller. The CFD simulations are performed on the computational domain consisting of the labyrinth seal and the impeller. The relationship between the leakage loss coefficient and the isentropic efficiency is indicated. With the application of the RBF model, the global sensitivity analysis to the seal geometric design parameters is carried out, and the geometry of the labyrinth seal is optimized. The leakage of the optimized labyrinth seal is reduced remarkably and the impeller’s isentropic efficiency improved by 2% in a wide operating range.


Author(s):  
N. Sitaram ◽  
M. Govardhan ◽  
K. V. Murali

The present paper presents experimental results on the effects of inlet total pressure distortion on the performance and flow field of a centrifugal compressor. The total pressure at inlet is artificially distorted by means of a perforated sheet, which is supported by a support mesh. A total of eleven configurations, including clean inlet configuration, are tested. Performance measurements and impeller inlet and exit flow studies at three flow coefficients, one near design flow coefficient, one below design flow coefficient and one above design flow coefficient, are carried out. The present paper presents and discusses results at off-design flow coefficients and the effects of stage loading on the distortion effects are presented. A new parameter, Distortion Index (DI) is introduced. As DI increases, the mass averaged total pressure at exit stations decreases. Distortion sector angle of 60° having the lowest total pressure is found to be the critical sector for circumferential distortion configurations. As the Distortion Correlation parameter, DC(60) increases, the mass averaged total pressure for circumferential distortion configuration decreases, except in the case of low flow coefficient where DC(60) is nearly constant. DC(60) also increases with sector angle. The static pressure normalized with static pressure for clean inlet decreases as the distortion sector angle is increased. Distortion attenuates the static pressure as the flow passes through the vaneless diffuser. The attenuation increases with the distortion sector angle.


2011 ◽  
Vol 291-294 ◽  
pp. 251-254
Author(s):  
Yu Wang ◽  
Zhen Luo

Centrifugal Compressors, which offer good flow stability, compact size and high stage pressure ratio, have been widely used in helicopter engines and sometime served as high pressure stage in small turbojet engines. In this paper, a method of developing a CFD model is presented for investigating the flow performance of a subsonic centrifugal compressor. The configuration used for the study is a subsonic centrifugal compressor which has a 60mm diameter impeller. A CFD modeling is carried out to obtain the performance and operational range of the compressor stage. The mesh independence studies were performed to provide confidence in the numerical results at operation speed. Particular emphasis is laid on the flow performance analysis with designed rotational speed of impeller.


Author(s):  
C. Xu ◽  
R. S. Amano

A low flow coefficient unshrouded centrifugal compressor would give up clearance very large in relation to the span of the blades, because centrifugal compressors produce a sufficiently large pressure rise in fewer stages. This problem is more acute for a low flow high-pressure ratio impeller. The large tip clearance would cause flow separations, and as a result it would drop both the efficiency and surge margin. Thus a design of a high efficiency and wide operation range for a low flow coefficient centrifugal compressor is a great challenge. This paper describes a new development of high efficiency and large surge margin low flow coefficient (0.145) centrifugal compressor. A viscous turbomachinery optimal design method developed by the authors for axial flow machine was further extended and used in this centrifugal compressor design. The new compressor has three main parts: impeller, a low solidity diffuser and volute. The tip clearance is under a special consideration in this design to allow impeller insensitiveness to the clearance. A three-dimensional low solidity diffuser design method is proposed and applied to this design. This design is successful to extend the low solidarity diffusers to high-pressure ratio compressor. It is demonstrated that the design is in a great success. The design performance range of the total to static efficiency of the compressor is about 85% and stability range is over 35%. The experimental results showed that the test results are in good agreement with the design.


Sign in / Sign up

Export Citation Format

Share Document