scholarly journals Performance Evaluation of a Full-Scale Fused Magnesia Furnace for MgO Production Based on Energy and Exergy Analysis

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 214
Author(s):  
Tianchi Jiang ◽  
Weijun Zhang ◽  
Shi Liu

A three-electrode alternating current fused magnesia furnace (AFMF) with advanced control technology was evaluated by combined energy and exergy analysis. To gain insight into the mass flow, energy flow and exergy efficiency of the present fused magnesia furnace, the exergy destruction was analysed to study the energy irreversibility of the furnace. Two different production processes, the magnesite ore smelting process (MOP) and light-calcined magnesia process (LMP), are discussed separately. Two methods were carried out to improve LMP and MOP; one of which has been applied in factories. The equipment consists of an electric power supply system, a light-calcined system and a three-electrode fused magnesia furnace. All parameters were tested or calculated based on the data investigated in industrial factories. The calculation results showed that for LMP and MOP, the mass transport efficiencies were 16.6% and 38.3%, the energy efficiencies were 62.2% and 65.5%, and the exergy destructions were 70.5% and 48.4%, respectively. Additionally, the energy efficiency and exergy efficiency of the preparation process of LMP were 39.4% and 35.6%, respectively. After the production system was improved, the mass transport efficiency, energy efficiency and exergy destruction were determined.

Author(s):  
Arif Rahman Hakim ◽  
Wahyu Tri Handoyo ◽  
Putri Wullandari

Energy and exergy analysis has been conducted on photovoltaic (PV) system in Bantul Regency, a special region of Yogyakarta, Indonesia. The PV exergy analysis was used to determine the performance of the PV system by considering environmental factors other than solar irradiance. This research aims to obtain values of exergy and energy efficiencies in the PV system. The experiment results show that the energy efficiency value produced by the PV system was 8.62–74.18%, meanwhile its exergy efficiency was 0.29%-9.40%, respectively. The value of exergy efficiency is lower than the value of energy efficiency. This result confirmed that the environmental factor greatly affects the output of the PV system. It can be concluded that high solar radiation does not always increase the production of exergy, since it is also influenced by the environmental temperature and the PV cells' temperature.


REAKTOR ◽  
2016 ◽  
Vol 16 (1) ◽  
pp. 24 ◽  
Author(s):  
Suherman Suherman ◽  
Rona Trisnaningtyas

Energy and exergy analysis of cassava starch drying in continuous vibrated fluidized bed dryer were carried out to assess the performance of the system in terms of energy utilization ratio, energy efficiency, exergy inflow and outflow, exergy loss, and exergetic efficiency. The results showed cassava starch has starch content 87%, degree of whiteness 95%, negative fiber content, sperichal granula with average diameter12.32 μm, orthorhombic crystal structure and crystal size 47.467 nm . Energy utilization and energy utilization ratio increased from 0.08 to 0.20 J/s and 0.35 to 0.4 as the drying temperature  increased from 50 to 70 oC. Energy efficiency increased from 13.80 % to 23.31 %, while exergy inflow, outflow, and losses increased from 4.701 to 14.678, 2.277 to 6.344, and 2.424 to 8.334 J/s respectively in the above temperature range. Exergetic efficiency decreased with increase in drying air temperature, while exergetic improvement potential increased with increased drying air temperature. Keywords: Cassava starch, continuous drying, energy and exergy analysis, vibrated fluidized bed Abstrak Analisis energi dan eksergi pengeringan pati tapioka menggunakan pengering kontinu unggun fluidisasi getar, telah dilakukan untuk menilai kinerja sistem dalam bentuk utilisasi energi, efisiensi energi, eksergi masuk dan keluar, eksergi hilang dan efisiensi eksergi. Hasil analisis pati memiliki kandungan starch 87%, tingkat keputihan 95%, kandungan serat negatif, bentuk partikel granular spherical dengan diameter 12,32 μm, struktur kristal orthorhombic dan ukuran kristal sebesar 47,467 nm. Peningkatan suhu pengering dari 50 menjadi 70 0C akan meningkatkan utilisasi energi dan rasio utilisasi energi dari 0,08 menjadi 0,20 J/s dan 0,35 menjadi 0,4. Efisiensi energi meningkat dari 13,80% hingga 23,31%, sedangkan eksergi masuk dan keluar, eksergi hilang meningkat dari 4,701 menjadi 14,678, 2,277 menjadi 6,344, dan 2,424 menjadi 8,334 J/s. Efisiensi eksergi menurun dengan naiknya suhu sedangkan potensi pengembangan eksergi meningkat dengan naiknya suhu. Kata kunci:. Analisis energi dan eksergi, pati tapioka, pengeringan kontinu, unggun fluidisasi getar


Author(s):  
Avdhesh Kr. Sharma ◽  
Raj Kumar Singh

This article describes the energy and exergy analysis of the reduction zone in a downdraft biomass gasifier. A simplistic formulation for describing the pyrolysis and oxidation of these products has been presented for initialization. Equilibrium and kinetic models are used to predict the reduction products leaving the reduction zone and thus the 1st law efficiency. In the reduction zone, exergy destruction due to chemical, physical, compositional, internal heat transfer and heat loss to the surrounding has been quantified to describe 2nd law efficiency. The comparison of equilibrium and kinetic models is carried out with experimental data for general validity. Parametric analysis of char bed length and inflow temperature on gas composition, un-converted char, exergy destruction, 1st law and the 2nd law efficiency has also been carried out. Simulation results identified a critical char bed length (where all char gets consumed) for a given feedstock, which depends on residence time and reaction temperature in the reduction zone. Near critical char bed length, predictions show high calorific value of gas with relatively less exergy destruction and thus optimum reactor performance. The accuracy of the prediction depends on the validity of initial input conditions.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4842 ◽  
Author(s):  
Ryszard Zwierzchowski ◽  
Marcin Wołowicz

The paper contains a simplified energy and exergy analysis of pumps and pipelines system integrated with Thermal Energy Storage (TES). The analysis was performed for a combined heat and power plant (CHP) supplying heat to the District Heating System (DHS). The energy and exergy efficiency for the Block Part of the Siekierki CHP Plant in Warsaw was estimated. CHP Plant Siekierki is the largest CHP plant in Poland and the second largest in Europe. The energy and exergy analysis was executed for the three different values of ambient temperature. It is according to operation of the plant in different seasons: winter season (the lowest ambient temperature Tex = −20 °C, i.e., design point conditions), the intermediate season (average ambient temperature Tex = 1 °C), and summer (average ambient temperature Tex = 15 °C). The presented results of the analysis make it possible to identify the places of the greatest exergy destruction in the pumps and pipelines system with TES, and thus give the opportunity to take necessary improvement actions. Detailed results of the energy-exergy analysis show that both the energy consumption and the rate of exergy destruction in relation to the operation of the pumps and pipelines system of the CHP plant with TES for the tank charging and discharging processes are low.


2019 ◽  
Vol 9 (23) ◽  
pp. 5028 ◽  
Author(s):  
Pektezel ◽  
Acar

This paper presents energy and exergy analysis of two vapor compression refrigeration cycles powered by organic Rankine cycle. Refrigeration cycle of combined system was designed with single and dual evaporators. R134a, R1234ze(E), R227ea, and R600a fluids were used as working fluids in combined systems. Influences of different parameters such as evaporator, condenser, boiler temperatures, and turbine and compressor isentropic efficiencies on COPsys and ƞex,sys were analyzed. Second law efficiency, degree of thermodynamic perfection, exergy destruction rate, and exergy destruction ratio were detected for each component in systems. R600a was determined as the most efficient working fluid for proposed systems. Both COPsys and ƞex,sys of combined ORC-single evaporator VCR cycle was detected to be higher than the system with dual evaporator.


2014 ◽  
Vol 592-594 ◽  
pp. 2437-2441 ◽  
Author(s):  
Gunalan Muthu ◽  
Subramaniam Shanmugam ◽  
Arunachalam R. Veerappan

The Performance of a thermal system is generally analysed by carrying out energy and exergy analysis of its different subsystems. In the present study the performance of subsystem namely PDC, receiver plate and PDC in a system of solar parabolic dish thermoelectric generator is studied. It is found that the energy and exergy loss are minimum in the receiver plate as compared to PDC and thermoelectric generator (TEG) at a particular direct normal irradiation (DNI). The exergy and energy efficiency in the PDC and TEG increase with increase in concentration ratio.


Author(s):  
Ahmad Fudholi ◽  
Mariyam Fazleena Musthafa ◽  
Abrar Ridwan ◽  
Rado Yendra ◽  
Ari Pani Desvina ◽  
...  

<span lang="EN-US">Photovoltaic thermal (PVT) collectors convert solar radiation directly to both electrical and thermal energies. A PVT collector basiccaly combines the functions of a flat plate solar collector and those of a PV panel. This review presents thermodinamics fundamentals, descriptions, and previous works conducted on energy and exergy analysis of air based PVT collector. Studies in 2010 to 2018 of the energy and exergy analysis of air based PVT collectors are summarized. The energy and exergy efficiency of air based PVT collector ranges from 31% to 94% and 8.7% to 18%, respectively. In addition, flat plate solar collector is presented. Studies conducted on air based PVT collectors are reviewed.</span>


Author(s):  
M. N. Khan ◽  
Ibrahim M. Alarifi ◽  
I. Tlili

Abstract Environmentally friendly and effective power systems have been receiving increased investigation due to the aim of addressing global warming, energy expansion, and economic growth. Gas turbine cycles are perceived as a useful technology that has advanced power capacity. In this research, a gas turbine cycle has been proposed and developed from a simple and regenerative gas turbine cycle to enhance performance and reduce Specific fuel consumption. The impact of specific factors regarding the proposed gas turbine cycle on thermal efficiency, net output, specific fuel consumption, and exergy destruction, have been inspected. The assessments of the pertinent parameters were performed based on conventional thermodynamic energy and exergy analysis. The results obtained indicate that the peak temperature of the Proposed Gas Turbine Cycle increased considerably without affecting fuel consumption. The results show that at Pressure Ratio (rp = 6) the performance of the Proposed Gas Turbine Cycle is much better than Single Gas Turbine Cycle but the total exergy destruction of Proposed Gas Turbine Cycle higher than the SGTC.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 945
Author(s):  
Lukasz Szablowski ◽  
Piotr Krawczyk ◽  
Marcin Wolowicz

Efficiently storing energy on a large scale poses a major challenge and one that is growing in importance with the increasing share of renewables in the energy mix. The only options at present are either pumped hydro or compressed air storage. One novel alternative is to store energy using liquid air, but this technology is not yet fully mature and requires substantial research and development, including in-depth energy and exergy analysis. This paper presents an exergy analysis of the Adiabatic Liquid Air Energy Storage (A-LAES) system based on the Linde–Hampson cycle. The exergy analysis was carried out for four cases with different parameters, in particular the discharge pressure of the air at the inlet of the turbine (20, 40, 100, 150 bar). The results of the analysis show that the greatest exergy destruction can be observed in the air evaporator and in the Joule–Thompson valve. In the case of air evaporator, the destruction of exergy is greatest for the lowest discharge pressure, i.e., 20 bar, and reaches over 118 MWh/cycle. It decreases with increasing discharge pressure, down to approximately 24 MWh/cycle for 150 bar, which is caused by a decrease in the heat of vaporization of air. In the case of Joule–Thompson valve, the changes are reversed. The highest destruction of exergy is observed for the highest considered discharge pressure (150 bar) and amounts to over 183 MWh/cycle. It decreases as pressure is lowered to 57.5 MWh/cycle for 20 bar. The other components of the system do not show exergy destruction greater than approximately 50 MWh/cycle for all considered pressures. Specific liquefaction work of the system ranged from 0.189 kWh/kgLA to 0.295 kWh/kgLA and the efficiency from 44.61% to 55.18%.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Osman Shamet ◽  
Rana Ahmed ◽  
Kamal Nasreldin Abdalla

In this study, the energy and exergy analysis of Garri 4 power plant in Sudan is presented. The primary objective of this paper is to identify the major source of irreversibilities in the cycle. The equipment of the power plant has been analyzed individually. Values regarding heat loss and exergy destruction have been presented for each equipment. The results confirmed that the condenser was the main source for energy loss (about 67%), while ex­ergy analysis revealed that the boiler contributed to the largest percentage of exergy destruction (about 84.36%) which can be reduced by preheating the inlet water to a sufficient temperature and controlling air to fuel ratio.


Sign in / Sign up

Export Citation Format

Share Document