Energy and Exergy Analysis of the Teduction Zone in a Downdraft (Biomass) Gasifier

Author(s):  
Avdhesh Kr. Sharma ◽  
Raj Kumar Singh

This article describes the energy and exergy analysis of the reduction zone in a downdraft biomass gasifier. A simplistic formulation for describing the pyrolysis and oxidation of these products has been presented for initialization. Equilibrium and kinetic models are used to predict the reduction products leaving the reduction zone and thus the 1st law efficiency. In the reduction zone, exergy destruction due to chemical, physical, compositional, internal heat transfer and heat loss to the surrounding has been quantified to describe 2nd law efficiency. The comparison of equilibrium and kinetic models is carried out with experimental data for general validity. Parametric analysis of char bed length and inflow temperature on gas composition, un-converted char, exergy destruction, 1st law and the 2nd law efficiency has also been carried out. Simulation results identified a critical char bed length (where all char gets consumed) for a given feedstock, which depends on residence time and reaction temperature in the reduction zone. Near critical char bed length, predictions show high calorific value of gas with relatively less exergy destruction and thus optimum reactor performance. The accuracy of the prediction depends on the validity of initial input conditions.

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4842 ◽  
Author(s):  
Ryszard Zwierzchowski ◽  
Marcin Wołowicz

The paper contains a simplified energy and exergy analysis of pumps and pipelines system integrated with Thermal Energy Storage (TES). The analysis was performed for a combined heat and power plant (CHP) supplying heat to the District Heating System (DHS). The energy and exergy efficiency for the Block Part of the Siekierki CHP Plant in Warsaw was estimated. CHP Plant Siekierki is the largest CHP plant in Poland and the second largest in Europe. The energy and exergy analysis was executed for the three different values of ambient temperature. It is according to operation of the plant in different seasons: winter season (the lowest ambient temperature Tex = −20 °C, i.e., design point conditions), the intermediate season (average ambient temperature Tex = 1 °C), and summer (average ambient temperature Tex = 15 °C). The presented results of the analysis make it possible to identify the places of the greatest exergy destruction in the pumps and pipelines system with TES, and thus give the opportunity to take necessary improvement actions. Detailed results of the energy-exergy analysis show that both the energy consumption and the rate of exergy destruction in relation to the operation of the pumps and pipelines system of the CHP plant with TES for the tank charging and discharging processes are low.


2019 ◽  
Vol 9 (23) ◽  
pp. 5028 ◽  
Author(s):  
Pektezel ◽  
Acar

This paper presents energy and exergy analysis of two vapor compression refrigeration cycles powered by organic Rankine cycle. Refrigeration cycle of combined system was designed with single and dual evaporators. R134a, R1234ze(E), R227ea, and R600a fluids were used as working fluids in combined systems. Influences of different parameters such as evaporator, condenser, boiler temperatures, and turbine and compressor isentropic efficiencies on COPsys and ƞex,sys were analyzed. Second law efficiency, degree of thermodynamic perfection, exergy destruction rate, and exergy destruction ratio were detected for each component in systems. R600a was determined as the most efficient working fluid for proposed systems. Both COPsys and ƞex,sys of combined ORC-single evaporator VCR cycle was detected to be higher than the system with dual evaporator.


Author(s):  
M. N. Khan ◽  
Ibrahim M. Alarifi ◽  
I. Tlili

Abstract Environmentally friendly and effective power systems have been receiving increased investigation due to the aim of addressing global warming, energy expansion, and economic growth. Gas turbine cycles are perceived as a useful technology that has advanced power capacity. In this research, a gas turbine cycle has been proposed and developed from a simple and regenerative gas turbine cycle to enhance performance and reduce Specific fuel consumption. The impact of specific factors regarding the proposed gas turbine cycle on thermal efficiency, net output, specific fuel consumption, and exergy destruction, have been inspected. The assessments of the pertinent parameters were performed based on conventional thermodynamic energy and exergy analysis. The results obtained indicate that the peak temperature of the Proposed Gas Turbine Cycle increased considerably without affecting fuel consumption. The results show that at Pressure Ratio (rp = 6) the performance of the Proposed Gas Turbine Cycle is much better than Single Gas Turbine Cycle but the total exergy destruction of Proposed Gas Turbine Cycle higher than the SGTC.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 945
Author(s):  
Lukasz Szablowski ◽  
Piotr Krawczyk ◽  
Marcin Wolowicz

Efficiently storing energy on a large scale poses a major challenge and one that is growing in importance with the increasing share of renewables in the energy mix. The only options at present are either pumped hydro or compressed air storage. One novel alternative is to store energy using liquid air, but this technology is not yet fully mature and requires substantial research and development, including in-depth energy and exergy analysis. This paper presents an exergy analysis of the Adiabatic Liquid Air Energy Storage (A-LAES) system based on the Linde–Hampson cycle. The exergy analysis was carried out for four cases with different parameters, in particular the discharge pressure of the air at the inlet of the turbine (20, 40, 100, 150 bar). The results of the analysis show that the greatest exergy destruction can be observed in the air evaporator and in the Joule–Thompson valve. In the case of air evaporator, the destruction of exergy is greatest for the lowest discharge pressure, i.e., 20 bar, and reaches over 118 MWh/cycle. It decreases with increasing discharge pressure, down to approximately 24 MWh/cycle for 150 bar, which is caused by a decrease in the heat of vaporization of air. In the case of Joule–Thompson valve, the changes are reversed. The highest destruction of exergy is observed for the highest considered discharge pressure (150 bar) and amounts to over 183 MWh/cycle. It decreases as pressure is lowered to 57.5 MWh/cycle for 20 bar. The other components of the system do not show exergy destruction greater than approximately 50 MWh/cycle for all considered pressures. Specific liquefaction work of the system ranged from 0.189 kWh/kgLA to 0.295 kWh/kgLA and the efficiency from 44.61% to 55.18%.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Osman Shamet ◽  
Rana Ahmed ◽  
Kamal Nasreldin Abdalla

In this study, the energy and exergy analysis of Garri 4 power plant in Sudan is presented. The primary objective of this paper is to identify the major source of irreversibilities in the cycle. The equipment of the power plant has been analyzed individually. Values regarding heat loss and exergy destruction have been presented for each equipment. The results confirmed that the condenser was the main source for energy loss (about 67%), while ex­ergy analysis revealed that the boiler contributed to the largest percentage of exergy destruction (about 84.36%) which can be reduced by preheating the inlet water to a sufficient temperature and controlling air to fuel ratio.


2020 ◽  
pp. 226-226
Author(s):  
Wenjie Rong ◽  
Baokuan Li ◽  
Fengsheng Qi

A walking beam type reheating furnace with advanced control technology has been evaluated by combined energy and exergy analysis. In order to gain insight into the performance of the present furnace, the results of energy analysis are compared with those in published papers and the irreversibility of the furnace is analyzed via exergy destruction calculation. The results show that slabs preheated before charged into the furnace can save fuel and improve energy utilization. The structure and material of the wall and roof show good thermal insulation. However, the oxidized scale is a little more and the temperature of flue gas is high in the present reheating furnace. The energy efficiency of the furnace is 71.01%, while exergy efficiency is 51.41%, indicating a potential for energy-saving improvements of the present furnace. The exergy destruction of the furnace accounts for 28.36% of total exergy input which is mainly caused by heat transfer through a finite temperature difference (14.71%), fuel combustion (11.66%) and scale formation (1.99%).


2019 ◽  
Vol 27 (04) ◽  
pp. 1950041 ◽  
Author(s):  
Chukwuemeka J. Okereke ◽  
Idehai O. Ohijeagbon ◽  
Olumuyiwa A. Lasode

In this study, energy and exergy analysis was used to evaluate the performance of a vapor compression refrigeration system with a flooded evaporator and the causes of high temperatures of beverage during the production process determined. Subsequently, the components of the operation that require modification were identified in order to improve the system performance. The actual operating parameters related to energy and exergy analysis of the investigated beverage manufacturing plant were measured, the thermal properties of the beverage were determined from a calorimeter experiment, and mathematical models were developed based on the first and second laws of thermodynamics from the literature. The system energy and exergy efficiencies were 57.46% and 21.17%, respectively, whereas the system exergy destruction was 695.71[Formula: see text]kW. The highest exergy destruction among the components of the refrigeration system occurred at the cooling plate, followed by the ammonia compressor. The cooling plate also experienced a loss in the refrigerating effect of 43.59[Formula: see text]kW. Therefore, the cooling plate is the area with the highest potential for improvement. The ammonia compressor presents another potential area of improvement, which includes operating the compressor at a high compression ratio and high superheated temperature. However, the reduction of beverage inlet mass flow rate at the cooling plate offers the best opportunity to achieve a low beverage temperature between 1.00∘C and 2.00∘C and decreasing the system exergy destruction without incurring additional investment costs.


Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 586 ◽  
Author(s):  
Shahab Yousefizadeh Dibazar ◽  
Gholamreza Salehi ◽  
Afshin Davarpanah

Three types of organic Rankine cycles (ORCs): basic ORC (BORC), ORC with single regeneration (SRORC) and ORC with double regeneration (DRORC) under the same heat source have been simulated in this study. In the following, the energy and exergy analysis and the advanced exergy analysis of these three cycles have been performed and compared. With a conventional exergy analysis, researchers can just evaluate the performance of components separately to find the one with the highest amount of exergy destruction. Advanced analysis divides the exergy destruction rate into unavoidable and avoidable, as well as endogenous and exogenous, parts. This helps designers find more data about the effect of each component on other components and the real potential of each component to improve its efficiency. The results of the advanced exergy analysis illustrate that regenerative ORCs have high potential for reducing irreversibilities compared with BORC. Total exergy destruction rates of 4.13 kW (47%) and 5.25 kW (45%) happen in avoidable/endogenous parts for SRORC and DRORC, respectively. Additionally, from an advanced exergy analysis viewpoint, the priority of improvement for system components is given to turbines, evaporators, condensers and feed-water heaters, respectively.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 214
Author(s):  
Tianchi Jiang ◽  
Weijun Zhang ◽  
Shi Liu

A three-electrode alternating current fused magnesia furnace (AFMF) with advanced control technology was evaluated by combined energy and exergy analysis. To gain insight into the mass flow, energy flow and exergy efficiency of the present fused magnesia furnace, the exergy destruction was analysed to study the energy irreversibility of the furnace. Two different production processes, the magnesite ore smelting process (MOP) and light-calcined magnesia process (LMP), are discussed separately. Two methods were carried out to improve LMP and MOP; one of which has been applied in factories. The equipment consists of an electric power supply system, a light-calcined system and a three-electrode fused magnesia furnace. All parameters were tested or calculated based on the data investigated in industrial factories. The calculation results showed that for LMP and MOP, the mass transport efficiencies were 16.6% and 38.3%, the energy efficiencies were 62.2% and 65.5%, and the exergy destructions were 70.5% and 48.4%, respectively. Additionally, the energy efficiency and exergy efficiency of the preparation process of LMP were 39.4% and 35.6%, respectively. After the production system was improved, the mass transport efficiency, energy efficiency and exergy destruction were determined.


2019 ◽  
Vol 11 (21) ◽  
pp. 6006 ◽  
Author(s):  
Olusola Bamisile ◽  
Qi Huang ◽  
Paul O. K. Anane ◽  
Mustafa Dagbasi

In this research, a novel trigeneration powered by a renewable energy (RE) source is developed and analyzed. The trigeneration system is designed to produce electricity, hot water, and cooling using two steam cycles, a gas cycle, hot water chamber, and an absorption cycle. The RE source considered in the scope of this study is biogas generated from chicken manure and maize silage. The energy and exergy analysis of the trigeneration system is performed with the aim to achieve higher efficiencies. The efficiencies are presented based on power generation, cogeneration (electricity and cooling) and trigeneration. The overall trigeneration energy and exergy efficiency for the system developed is 64% and 34.51%. The exergy destruction within the system is greatest in the combustion chamber.


Sign in / Sign up

Export Citation Format

Share Document