scholarly journals Ensemble Precipitation Estimation Using a Fuzzy Rule-Based Model

2021 ◽  
Vol 5 (1) ◽  
pp. 48
Author(s):  
O. Burak Akgun ◽  
Elcin Kentel

In this study, a Takagi-Sugeno (TS) fuzzy rule-based (FRB) model is used for ensembling precipitation time series. The TS FRB model takes precipitation predictions of grid-based regional climate models (RCMs) from the EUR11 domain, available from the CORDEX database, as inputs to generate ensembled precipitation time series for two meteorological stations (MSs) in the Mediterranean region of Turkey. For each MS, RCM data that are available at the closest grid to the corresponding MSs are used. To generate the fuzzy rules of the TS FRB model, the subtractive clustering algorithm (SC) is utilized. Together with the TS FRB, the simple ensemble mean approach is also applied, and the performances of these two model results and individual RCM predictions are compared. The results show that ensembled models outperform individual RCMs, for monthly precipitation, for both MSs. On the other hand, although ensemble models capture the general trend in the observations, they underestimate the peak precipitation events.

2021 ◽  
Author(s):  
Kelly Mahoney ◽  
James D. Scott ◽  
Michael Alexander ◽  
Rachel McCrary ◽  
Mimi Hughes ◽  
...  

AbstractUnderstanding future precipitation changes is critical for water supply and flood risk applications in the western United States. The North American COordinated Regional Downscaling EXperiment (NA-CORDEX) matrix of global and regional climate models at multiple resolutions (~ 50-km and 25-km grid spacings) is used to evaluate mean monthly precipitation, extreme daily precipitation, and snow water equivalent (SWE) over the western United States, with a sub-regional focus on California. Results indicate significant model spread in mean monthly precipitation in several key water-sensitive areas in both historical and future projections, but suggest model agreement on increasing daily extreme precipitation magnitudes, decreasing seasonal snowpack, and a shortening of the wet season in California in particular. While the beginning and end of the California cool season are projected to dry according to most models, the core of the cool season (December, January, February) shows an overall wetter projected change pattern. Daily cool-season precipitation extremes generally increase for most models, particularly in California in the mid-winter months. Finally, a marked projected decrease in future seasonal SWE is found across all models, accompanied by earlier dates of maximum seasonal SWE, and thus a shortening of the period of snow cover as well. Results are discussed in the context of how the diverse model membership and variable resolutions offered by the NA-CORDEX ensemble can be best leveraged by stakeholders faced with future water planning challenges.


2012 ◽  
Vol 16 (6) ◽  
pp. 1709-1723 ◽  
Author(s):  
D. González-Zeas ◽  
L. Garrote ◽  
A. Iglesias ◽  
A. Sordo-Ward

Abstract. An important step to assess water availability is to have monthly time series representative of the current situation. In this context, a simple methodology is presented for application in large-scale studies in regions where a properly calibrated hydrologic model is not available, using the output variables simulated by regional climate models (RCMs) of the European project PRUDENCE under current climate conditions (period 1961–1990). The methodology compares different interpolation methods and alternatives to generate annual times series that minimise the bias with respect to observed values. The objective is to identify the best alternative to obtain bias-corrected, monthly runoff time series from the output of RCM simulations. This study uses information from 338 basins in Spain that cover the entire mainland territory and whose observed values of natural runoff have been estimated by the distributed hydrological model SIMPA. Four interpolation methods for downscaling runoff to the basin scale from 10 RCMs are compared with emphasis on the ability of each method to reproduce the observed behaviour of this variable. The alternatives consider the use of the direct runoff of the RCMs and the mean annual runoff calculated using five functional forms of the aridity index, defined as the ratio between potential evapotranspiration and precipitation. In addition, the comparison with respect to the global runoff reference of the UNH/GRDC dataset is evaluated, as a contrast of the "best estimator" of current runoff on a large scale. Results show that the bias is minimised using the direct original interpolation method and the best alternative for bias correction of the monthly direct runoff time series of RCMs is the UNH/GRDC dataset, although the formula proposed by Schreiber (1904) also gives good results.


2016 ◽  
Vol 20 (4) ◽  
pp. 1387-1403 ◽  
Author(s):  
Hjalte Jomo Danielsen Sørup ◽  
Ole Bøssing Christensen ◽  
Karsten Arnbjerg-Nielsen ◽  
Peter Steen Mikkelsen

Abstract. Spatio-temporal precipitation is modelled for urban application at 1 h temporal resolution on a 2 km grid using a spatio-temporal Neyman–Scott rectangular pulses weather generator (WG). Precipitation time series used as input to the WG are obtained from a network of 60 tipping-bucket rain gauges irregularly placed in a 40 km  ×  60 km model domain. The WG simulates precipitation time series that are comparable to the observations with respect to extreme precipitation statistics. The WG is used for downscaling climate change signals from regional climate models (RCMs) with spatial resolutions of 25 and 8 km, respectively. Six different RCM simulation pairs are used to perturb the WG with climate change signals resulting in six very different perturbation schemes. All perturbed WGs result in more extreme precipitation at the sub-daily to multi-daily level and these extremes exhibit a much more realistic spatial pattern than what is observed in RCM precipitation output. The WG seems to correlate increased extreme intensities with an increased spatial extent of the extremes meaning that the climate-change-perturbed extremes have a larger spatial extent than those of the present climate. Overall, the WG produces robust results and is seen as a reliable procedure for downscaling RCM precipitation output for use in urban hydrology.


2012 ◽  
Vol 9 (1) ◽  
pp. 175-214
Author(s):  
D. González-Zeas ◽  
L. Garrote ◽  
A. Iglesias ◽  
A. Sordo-Ward

Abstract. An important aspect to assess the impact of climate change on water availability is to have monthly time series representative of the current situation. In this context, a simple methodology is presented for application in large-scale studies in regions where a properly calibrated hydrologic model is not available, using the output variables simulated by regional climate models (RCMs) of the European project PRUDENCE under current climate conditions (period 1961–1990). The methodology compares different interpolation methods and alternatives to generate annual times series that minimize the bias with respect to observed values. The objective is to identify the best alternative to obtain bias-corrected, monthly runoff time series from the output of RCM simulations. This study uses information from 338 basins in Spain that cover the entire mainland territory and whose observed values of naturalised runoff have been estimated by the distributed hydrological model SIMPA. Four interpolation methods for downscaling runoff to the basin scale from 10 RCMs are compared with emphasis on the ability of each method to reproduce the observed behavior of this variable. The alternatives consider the use of the direct runoff of the RCMs and the mean annual runoff calculated using five functional forms of the aridity index, defined as the ratio between potential evaporation and precipitation. In addition, the comparison with respect to the global runoff reference of the UNH/GRDC dataset is evaluated, as a contrast of the "best estimator" of current runoff on a large scale. Results show that the bias is minimised using the direct original interpolation method and the best alternative for bias correction of the monthly direct runoff time series of RCMs is the UNH/GRDC dataset, although the formula proposed by Schreiber also gives good results.


2016 ◽  
Vol 29 (7) ◽  
pp. 2621-2633 ◽  
Author(s):  
Mingkai Jiang ◽  
Benjamin S. Felzer ◽  
Dork Sahagian

Abstract The proper understanding of precipitation variability, seasonality, and predictability are important for effective environmental management. Precipitation and its associated extremes vary in magnitude and duration both spatially and temporally, making it one of the most challenging climate parameters to predict on the basis of global and regional climate models. Using information theory, an improved understanding of precipitation predictability in the conterminous United States over the period of 1949–2010 is sought based on a gridded monthly precipitation dataset. Predictability is defined as the recurrent likelihood of patterns described by the metrics of magnitude variability and seasonality. It is shown that monthly mean precipitation and duration-based dry and wet extremes are generally highly variable in the east compared to those in the west, while the reversed spatial pattern is observed for intensity-based wetness indices except along the Pacific Northwest coast. It is thus inferred that, over much of the U.S. landscape, variations of monthly mean precipitation are driven by the variations in precipitation occurrences rather than the intensity of infrequent heavy rainfall. It is further demonstrated that precipitation seasonality for means and extremes is homogeneously invariant within the United States, with the exceptions of the West Coast, Florida, and parts of the Midwest, where stronger seasonality is identified. A proportionally higher role of variability in regulating precipitation predictability is demonstrated. Seasonality surpasses variability only in parts of the West Coast. The quantified patterns of predictability for precipitation means and extremes have direct applications to those phenomena influenced by climate periodicity, such as biodiversity and ecosystem management.


2012 ◽  
Vol 04 (03) ◽  
pp. 1250018 ◽  
Author(s):  
SAMUEL S. P. SHEN ◽  
DAVID NEW ◽  
THOMAS M. SMITH ◽  
PHILLIP A. ARKIN

This paper uses the Hilbert–Huang transform (HHT) method to make time–frequency diagnostic analyses of four monthly time series of the global precipitation: MERG (1900–2008), REOF (1900–2008), GPCP (1979–2009), and CMAP (1979–2009). All these data are the global land and ocean average of precipitation anomalies with respect to the mean of the entire data period. The MERG and REOF are spectral reconstructions based on historical data. The GPCP and CMAP are based on station gauge data and satellite remote sensing data. We have made the following analysis of the four datasets: (a) extract intrinsic mode functions (IMF) by HHT empirical model decomposition (EMD) sifting, (b) calculate the mean frequency and energy of each IMF, (c) calculate the Fourier spectra to compare with the IMF spectral properties, (d) calculate the Hilbert spectra and display the time–frequency variation of the precipitation time series, and (e) calculate the basic statistics of the four datasets, including mean, standard deviation, skewness, kurtosis and inter-correlation among the datasets. Our analysis results indicate the following: (i) IMFs may contain physical signals of MJO (Madden–Julian oscillation), monsoon, annual cycle, and ENSO (El Nino southern oscillation), (ii) Hilbert spectra appears to be an effective tool to display the time-frequency change of a precipitation time series and can help identify critical characteristics for improving data aggregation method and climate models, (iii) among the four datasets, MERG is the smoothest data and has the smallest variance and hence the smallest IMF energies, while the CMAP has the largest, followed by GPCP and REOF, and (iv) the nonlinear and nonstationary annual cycle is the IMF3 for all the four datasets, which is modulated by ENSO signals.


2012 ◽  
Vol 51 (1) ◽  
pp. 100-114 ◽  
Author(s):  
Robert E. Nicholas ◽  
David S. Battisti

AbstractThis study describes an EOF-based technique for statistical downscaling of high-spatial-resolution monthly-mean precipitation from large-scale reanalysis circulation fields. The method is demonstrated and evaluated for four widely separated locations: the southeastern United States, the upper Colorado River basin, China’s Jiangxi Province, and central Europe. For each location, the EOF-based downscaling models successfully reproduce the observed annual cycle while eliminating the biases seen in NCEP–NCAR reanalysis precipitation. They also frequently reproduce the monthly precipitation anomalies with greater fidelity than is seen in the precipitation field derived directly from reanalysis, and they outperform a suite of regional climate models over the two U.S. locations. With the relatively high skill achieved over a range of climate regimes, this technique may be a viable alternative to numerical downscaling of monthly-mean precipitation for many locations.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12055
Author(s):  
Emily R. Williamson ◽  
Christopher J. Sergeant

Downscaling coarse global and regional climate models allows researchers to access weather and climate data at finer temporal and spatial resolution, but there remains a need to compare these models with empirical data sources to assess model accuracy. Here, we validate a widely used software for generating North American downscaled climate data, ClimateNA, with a novel empirical data source, 20th century weather journals kept by Admiralty Island, Alaska homesteader, Allen Hasselborg. Using Hasselborg’s journals, we calculated monthly precipitation and monthly mean of the maximum daily air temperature across the years 1926 to 1954 and compared these to ClimateNA data generated from the Hasselborg homestead location and adjacent areas. To demonstrate the utility and potential implications of this validation for other disciplines such as hydrology, we used an established regression equation to generate time series of 95% low duration flow estimates for the month of August using mean annual precipitation from ClimateNA predictions and Hasselborg data. Across 279 months, we found strong correlation between modeled and observed measurements of monthly precipitation (ρ = 0.74) and monthly mean of the maximum daily air temperature (ρ = 0.98). Monthly precipitation residuals (calculated as ClimateNA data - Hasselborg data) generally demonstrated heteroscedasticity around zero, but a negative trend in residual values starting during the last decade of observations may have been due to a shift to the cold-phase Pacific Decadal Oscillation. Air temperature residuals demonstrated a consistent but small positive bias, with ClimateNA tending to overestimate air temperature relative to Hasselborg’s journals. The degree of correlation between weather patterns observed at the Hasselborg homestead site and ClimateNA data extracted from spatial grid cells across the region varied by wet and dry climate years. Monthly precipitation from both data sources tended to be more similar across a larger area during wet years (mean ρ across grid cells = 0.73) compared to dry years (mean ρ across grid cells = 0.65). The time series of annual 95% low duration flow estimates for the month of August generated using ClimateNA and Hasselborg data were moderately correlated (ρ = 0.55). Our analysis supports previous research in other regions which also found ClimateNA to be a robust source for past climate data estimates.


2010 ◽  
Vol 11 (6) ◽  
pp. 1373-1379 ◽  
Author(s):  
William J. Gutowski ◽  
Raymond W. Arritt ◽  
Sho Kawazoe ◽  
David M. Flory ◽  
Eugene S. Takle ◽  
...  

Abstract This paper analyzes the ability of the North American Regional Climate Change Assessment Program (NARCCAP) ensemble of regional climate models to simulate extreme monthly precipitation and its supporting circulation for regions of North America, comparing 18 years of simulations driven by the National Centers for Environmental Prediction (NCEP)–Department of Energy (DOE) reanalysis with observations. The analysis focuses on the wettest 10% of months during the cold half of the year (October–March), when it is assumed that resolved synoptic circulation governs precipitation. For a coastal California region where the precipitation is largely topographic, the models individually and collectively replicate well the monthly frequency of extremes, the amount of extreme precipitation, and the 500-hPa circulation anomaly associated with the extremes. The models also replicate very well the statistics of the interannual variability of occurrences of extremes. For an interior region containing the upper Mississippi River basin, where precipitation is more dependent on internally generated storms, the models agree with observations in both monthly frequency and magnitude, although not as closely as for coastal California. In addition, simulated circulation anomalies for extreme months are similar to those in observations. Each region has important seasonally varying precipitation processes that govern the occurrence of extremes in the observations, and the models appear to replicate well those variations.


Author(s):  
Camila Billerbeck ◽  
Ligia Monteiro da Silva ◽  
Silvana Susko Marcellini ◽  
Arisvaldo Méllo Junior

Abstract Regional climate models (RCM) are the main tools for climate change impacts assessment in hydrological studies. These models, however, often show biases when compared to historical observations. Bias Correction (BC) are useful techniques to improve climate projection outputs. This study presents a multi-criteria decision analysis (MCDA) framework to compare combinations of RCM with selected BC methods. The comparison was based on the modified Kling-Gupta efficiency (KGE’). The criteria evaluated the general capability of models in reproducing the observed data main statistics. Other criteria evaluated were the relevant aspects for hydrological studies, such as seasonality, dry and wet periods. We applied four BC methods in four RCM monthly rainfall outputs from 1961 to 2005 in the Piracicaba river basin. The Linear Scaling (LS) method showed higher improvements in the general performance of the models. The RCM Eta-HadGEM2-ES, corrected with Standardized Reconstruction (SdRc) method, achieved the best results when compared to the observed precipitation. The bias corrected projected monthly precipitation (2006-2098) preserved the main signal of climate change effects when compared to the original outputs regarding annual rainfall. However, SdRc produced significant decrease in monthly average rainfall, higher than 45% for July, August and September for RCP4.5 and RCP8.5 scenarios.


Sign in / Sign up

Export Citation Format

Share Document