scholarly journals Assessing the Impacts of Hydropeaking on River Benthic Macroinvertebrates: A State-of-the-Art Methodological Overview

Environments ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 67
Author(s):  
Francesca Salmaso ◽  
Livia Servanzi ◽  
Giuseppe Crosa ◽  
Silvia Quadroni ◽  
Paolo Espa

As the global demand for renewable electricity grows, hydropower development of river basins increases across the world. Hydropeaking, i.e., streamflow alteration consisting of daily or subdaily rapid and marked discharge fluctuations, can affect river reaches below hydropower units. Environmental effects of hydropeaking include geomorphological alterations and possible modifications of the freshwater biota. Among affected instream communities, benthic macroinvertebrates are receiving increasing attention and the related scientific research has experienced significant progress in the last decade. In this context, this paper aims to summarize state-of-the-art methods for the assessment of hydropeaking impacts on benthic macroinvertebrate communities. The present review could support the proper design of monitoring plans aimed at assessing the ecological impacts of hydropeaking and the effects of possible mitigation strategies.

Author(s):  
Mauro Vallati ◽  
Lukáš Chrpa ◽  
Thomas L. Mccluskey

AbstractThe International Planning Competition (IPC) is a prominent event of the artificial intelligence planning community that has been organized since 1998; it aims at fostering the development and comparison of planning approaches, assessing the state-of-the-art in planning and identifying new challenging benchmarks. IPC has a strong impact also outside the planning community, by providing a large number of ready-to-use planning engines and testing pioneering applications of planning techniques.This paper focusses on the deterministic part of IPC 2014, and describes format, participants, benchmarks as well as a thorough analysis of the results. Generally, results of the competition indicates some significant progress, but they also highlight issues and challenges that the planning community will have to face in the future.


2021 ◽  
Author(s):  
Jo Halvard Halleraker ◽  
Mahmoud S. R. Kenawi ◽  
Jan Henning L’Abée - Lund ◽  
Anders G. Finstad ◽  
Knut Alfredsen

<p><strong>Riverine biodiversity</strong> is threatened with severe degradation from multiple pressures worldwide. One of the key pressures in European rivers are hydromorphological alterations. Rehabilitation of river habitats is accordingly high on the political agenda at the start of UN decade of ecological restoration (2021-2030).</p><p><strong>Water storage</strong> for hydropower production (HP) has severe impacts on aquatic ecology in Norway, with more than 3000 water bodies designated as heavily modified due to hydropower. Norway is the largest hydropower producer in Europe with a huge amount of high head storage schemes. Ca 86 TWh of this is storage hydropower, which constitutes more than 50% of the total in Europe. This makes Norway a potentially significant supplier of hydropeaking services. Flexible hydropower operations are crucial for EUs Green Deal in balancing electricity from renewable intermittent power generation such as wind and solar. </p><p>Many Norwegian <strong>HP licenses</strong> were issued before modern environmental requirements evolved. Few are re-licensed with emerging strategies to mitigate hydropeaking. Still, there seems to be a common understanding of relevant mitigation strategies emerging between many large hydropower producers. For example, flow ramping from hydropower tailrace water with direct outlet into fjords or other lake reservoirs may be less environmentally harmful than outlet into riverine habitat.In this study, we have assessed the Norwegian hydropower portfolio of more than 1600 HP facilities constructing a national database focusing on the knowledge base for assessing potential downstream hydropower ecological impacts. The ecological severity of such flow ramping and the restoration/mitigation potential, may depend on;</p><p> </p><p>About 51 % of the HPs (ca<strong> 80TWh</strong>) have tailrace into shorter rivers (<1 km) or directly into fjords or lake/reservoirs. Many of the largest HPs are in this category (e.g 50 HP> 500 MW). Close to 800 HP might have downstream impacts on rivers (> 0.5 km; about 49 % of all HP, in total of ca<strong> 56 TWh</strong>). Probably <strong>> 3 000 km of regulated rivers</strong> in Norway therefor might need more ecosystem-based mode of HP operation. <strong>Flow ramping analysis: </strong> Ecosystem-based HP operational rules are established in a selection of sustainably managed Norwegian rivers, still with significant baseload production (0.35-0.76 - TWh annual prod). However, eco-friendly mode of operation seems to be rare as our analysis indicate that flow ramping with potential ecological degradation seems widespread in many rivers. Surprisingly, even in many with operational ramping restriction as required mitigation.Our database may be further improved and updated (with e.g. more flow ramping data and biological indicators) and serve as a basis for a national hydropeaking strategy, and hence make more of the Norwegian hydropower portfolio in line with the EUs sustainability taxonomy.</p>


2021 ◽  
Author(s):  
Shreya Mishra ◽  
Raghav Awasthi ◽  
Frank Papay ◽  
Kamal Maheshawari ◽  
Jacek B Cywinski ◽  
...  

Question answering (QA) is one of the oldest research areas of AI and Compu- national Linguistics. QA has seen significant progress with the development of state-of-the-art models and benchmark datasets over the last few years. However, pre-trained QA models perform poorly for clinical QA tasks, presumably due to the complexity of electronic healthcare data. With the digitization of healthcare data and the increasing volume of unstructured data, it is extremely important for healthcare providers to have a mechanism to query the data to find appropriate answers. Since diagnosis is central to any decision-making for the clinicians and patients, we have created a pipeline to develop diagnosis-specific QA datasets and curated a QA database for the Cerebrovascular Accident (CVA). CVA, also commonly known as Stroke, is an important and commonly occurring diagnosis amongst critically ill patients. Our method when compared to clinician validation achieved an accuracy of 0.90(with 90% CI [0.82,0.99]). Using our method, we hope to overcome the key challenges of building and validating a highly accurate QA dataset in a semiautomated manner which can help improve performance of QA models.


2019 ◽  
Vol 5 ◽  
pp. 237802311881994 ◽  
Author(s):  
Diego F. Leal ◽  
Ragini Saira Malhotra ◽  
Joya Misra

The authors estimate migration flows of women in the 1990s at a global scale and provide a description of these migratory movements. The authors produce these data combining the 2011 World Bank Global Migrant Stock Database and state-of-the-art techniques to estimate migratory flows from stock data. The authors examine these flows in light of the global demand for care workers in the 1990s, showing that migration flows of women in that decade map onto the global care chains discussed in the qualitative literature. The data show that feminized migration flows in the period under analysis have a strong regional component. Yet the data also show that some of the largest feminized migratory corridors are in fact cross-regional.


1982 ◽  
Vol 60 (12) ◽  
pp. 3196-3205 ◽  
Author(s):  
Joseph B. Rasmussen

The heated area of Lake Wabamun prior to macrophyte harvesting had higher submerged macrophyte production, greater amounts of plant detritus in the sediment, and a higher standing crop of benthic macroinvertebrates than the unheated area. Species composition of the benthic macroinvertebrate community was also much different in the heated area with the warmest areas supporting a community dominated by tubificid oligochaetes (Limnodrilus hoffmeisteri and Tubifex tubifex), and the moderately heated areas supporting a community dominated by large Chironomus species (Chironomus plumosus and Chironomus atroviridis). Benthos of the unheated parts of the lake consisted mainly of smaller chironomid species such as Chironomus maturus, C. (cf.) staegeri, Polypedilum nubeculosum, Cladotanytarsus spp., and Tanytarsus spp. The heated area was subjected to mechanical macrophyte harvesting which removed the majority of the submerged macrophytes. This reduced the amount of plant detritus within the sediment and also the standing crop of benthic macroinvertebrates in the heated area. Species composition of the oligochaete-dominated community was not affected by harvesting. Species composition of the Chironomus-dominated area was greatly affected by harvesting and became more similar to that of the unheated area; densities of the large Chironomus species were reduced to low levels, while the densities of smaller chironomid species increased.


2014 ◽  
Vol 27 (20) ◽  
pp. 7529-7549 ◽  
Author(s):  
Toby R. Ault ◽  
Julia E. Cole ◽  
Jonathan T. Overpeck ◽  
Gregory T. Pederson ◽  
David M. Meko

Abstract Projected changes in global rainfall patterns will likely alter water supplies and ecosystems in semiarid regions during the coming century. Instrumental and paleoclimate data indicate that natural hydroclimate fluctuations tend to be more energetic at low (multidecadal to multicentury) than at high (interannual) frequencies. State-of-the-art global climate models do not capture this characteristic of hydroclimate variability, suggesting that the models underestimate the risk of future persistent droughts. Methods are developed here for assessing the risk of such events in the coming century using climate model projections as well as observational (paleoclimate) information. Where instrumental and paleoclimate data are reliable, these methods may provide a more complete view of prolonged drought risk. In the U.S. Southwest, for instance, state-of-the-art climate model projections suggest the risk of a decade-scale megadrought in the coming century is less than 50%; the analysis herein suggests that the risk is at least 80%, and may be higher than 90% in certain areas. The likelihood of longer-lived events (>35 yr) is between 20% and 50%, and the risk of an unprecedented 50-yr megadrought is nonnegligible under the most severe warming scenario (5%–10%). These findings are important to consider as adaptation and mitigation strategies are developed to cope with regional impacts of climate change, where population growth is high and multidecadal megadrought—worse than anything seen during the last 2000 years—would pose unprecedented challenges to water resources in the region.


OENO One ◽  
2019 ◽  
Vol 53 (4) ◽  
Author(s):  
Markus Rienth ◽  
Thibaut Scholasch

Rising global air temperatures will lead to an increased evapotranspiration and altered precipitation pattern. In many regions this may result in a negative water balance during the vegetative cycle, which can augment the risk of drought and will require mitigation strategies. These strategies, ultimately, will mean the installation of irrigation systems in some winegrowing regions where vines were cultivated historically under rain-fed conditions and growers do not have many years of experience with vine water management.This review aims to provide a state-of-the-art summary of the recent and most important literature on vine water assessment for monitoring and adapting vineyard management strategies to production goals in view of global warming. Plant, soil and atmospheric methods are reviewed, and their advantages and drawbacks are discussed. Recent advances in plant water status measurement reveal the limitation of traditional techniques such as water potential, particularly in the context of drought and high vapor pressure deficit and the discoveries regarding hydraulic and stomatal regulation. New technologies can integrate heterogeneous sources of information collected in the vineyard at different spatial and temporal resolutions. Such new approaches offer new synergies to overcome limitations inherent to plant water status measurement techniques obtained directly or indirectly from proxy measurements.


2004 ◽  
Vol 64 (3a) ◽  
pp. 531-541 ◽  
Author(s):  
C. Volkmer-Ribeiro ◽  
D. L. Guadagnin ◽  
R. De Rosa-Barbosa ◽  
M. M. Silva ◽  
S. Drügg-Hahn ◽  
...  

A new device to sample freshwater benthic macroinvertebrates was used in a low and sandy stretch of a Brazilian sub-tropical river (the River Caí, Triunfo, RS) and in one of its small tributaries, Bom Jardim brook (Arroio Bom Jardim). In this study, the effectiveness of this device, a PET sampler, was tested at different sites in the river and the brook throughout the four seasons between 2001-2002. Comparisons were made by PCA and ANOVA, both employing a bootstrap procedure based on similarity matrices. The PET sampler proved to be a reliable tool for detection of seasonal and spatial differences in richness, total abundance of organisms, and Shannon's diversity index in both river and brook and is therefore recommended for use in the monitoring of macroinvertebrate communities in this system.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Qiyuan Li ◽  
Zongyong Deng ◽  
Weichang Xu ◽  
Zhendong Li ◽  
Hao Liu

Although label distribution learning has made significant progress in the field of face age estimation, unsupervised learning has not been widely adopted and is still an important and challenging task. In this work, we propose an unsupervised contrastive label distribution learning method (UCLD) for facial age estimation. This method is helpful to extract semantic and meaningful information of raw faces with preserving high-order correlation between adjacent ages. Similar to the processing method of wireless sensor network, we designed the ConAge network with the contrast learning method. As a result, our model maximizes the similarity of positive samples by data enhancement and simultaneously pushes the clusters of negative samples apart. Compared to state-of-the-art methods, we achieve compelling results on the widely used benchmark, i.e., MORPH.


Author(s):  
Kevin R. Anderson ◽  
Wael Yassine

Abstract This paper presents modeling of the Puna Geothermal Venture as a case study in understanding how the technology of geothermal can by successfully implemented. The paper presents a review of the Puna Geothermal Venture specifications, followed by simulation results carried out using NREL SAM and RETSCREEN analysis tools in order to quantify the pertinent metrics associated with the geothermal powerplant by retrofitting its current capacity of 30 MW to 60 MW. The paper closes with a review of current state-of-the art H2S abatement strategies for geothermal power plants, and presents an outline of how these technologies can be implemented at the Puna Geothermal Venture.


Sign in / Sign up

Export Citation Format

Share Document