scholarly journals Development of a Digital Counterpart to Aid Decision Support on Energy Consumption of an Active Manufacturing Process

2021 ◽  
Vol 11 (1) ◽  
pp. 3
Author(s):  
Liam Morris ◽  
Michael Ahern ◽  
Dominic O’Sullivan ◽  
Ken Bruton

This research focused on the development of a Digital Model (DM) of a production line at a medical device company, with the objective of providing decision support to stakeholders based on their energy consumption. This model aims to reduce energy consumption by bringing operational data to process engineers, allowing them to make efficient improvement decisions while in production. In order to achieve this objective, the twin transition of digital integration and energy efficiency was enacted by organisations such as the International Energy Agency (IEA). This two-pronged approach involved working with process owners to understand the decision-making process that they undertook to streamline performance and develop the means to digitalise this data while also working with facilities and maintenance engineers to understand which equipment played the most important roles in the production process from an energy consumption perspective. By bringing the process data and energy data together in a digital model of the process, a decision support system could be developed which would unlock the potential to streamline operations not just from an output perspective, but also from an energy efficient perspective. When examining the process step with data catagorised as energy, operational and maintenance, it was found that only operational data was sufficient to support digital modelling in its current state. Therefore, the installation of a wireless energy metering network would be required to support digital modelling and further digital integration.

2019 ◽  
Vol 16 (1) ◽  
pp. 148-160
Author(s):  
Olga Piterina ◽  
Alexander Masharsky

Abstract Research purpose. The high-speed railway (HSR) construction project in the Baltic States is the largest joint infrastructure project since the restoration of independence of Latvia, Lithuania and Estonia. Rail Baltica (RB) is considered as the most energy-efficient project having the lowest environmental impact. However, the issue of energy consumption of the project was not sufficiently addressed either in the investment justification of the RB construction or in the relevant research works regarding the project. The aim of the current research is to determine the indicators of energy consumption and carbon dioxide (CO2) emissions intensity of the Latvian section of RB, since they are the key factors of the quantitative assessment of sustainability. Design/Methodology/Approach. Critical analysis of the academic research works and reports of the official international organizations dedicated to the topic of energy consumption and CO2 emissions of HSR was conducted prior to the calculation of the above-mentioned indicators. The method of calculation based on International Union of Railways (UIC) was used in order to conduct the cluster analysis within the framework of current work. The main points considered are electricity consumption, carbon dioxide emissions, and level of passenger and freight demand. Statistical databases of UIC and International Energy Agency were used. Findings. The calculations carried out by the authors of the given article demonstrate substantial figures of CO2 emissions intensity for Latvian section of the project related to the train load rate and traffic intensity which is evened out only by the CO2 emissions factor in Latvia. Originality/Value/Practical implications. On this basis the authors present the directions for future research required for the development of the effective strategy for the Latvian Republic with the aim of achieving the increase in the RB project’s ecological efficiency.


2018 ◽  
Vol 193 ◽  
pp. 05043 ◽  
Author(s):  
Valeriy Mishchenko ◽  
Sergei Kolodyazhniy ◽  
Elena Gorbaneva

Buildings are the largest source of carbon emissions and energy consumption around the world. Currently, the construction sector focuses on energy efficient and carbon emission reduction technologies to reduce the effect of a green house and improve the environment. The energy aspects of buildings depend on the early design process. The energy consumed by the building can be reduced to 80% by optimizing the orientation, the shape of the building, the insulation and ventilation during the design and management of the facilities after the completion of the construction. The reductions of energy consumption are fundamental to the International Energy Agency (IEA) goal, which is to reduce global carbon emissions by 77% against the projected data for 2050 to achieve the stabilized CO2 level provided by the Intergovernmental Panel on Climate Change (IPCC). In this issue, research and development of energy-efficient technologies are important, which play a crucial role in reducing initial costs and increasing energy conservation. To do this, it is recommended to use simulation modeling of the queue management system, which has practical application for both large systems and for private systems.


2019 ◽  
Vol 213 ◽  
pp. 02062
Author(s):  
Tadeusz Orzechowski

The increase in energy consumption is observed since the middle of the 20th century. At the same time, the International Energy Agency (IEA) forecasts a 50% increase in energy consumption by 2030. One of the ways to reduce the consumption of such fuels are small additions received from natural gas and renewable energy sources. Mixtures of alcohols with gasoline and diesel oil are produced. Their small additions allow for a certain share of energy from renewable sources without a noticeable change in the combustion characteristics of such fuels. The paper presents the studies on the evaporation of drops of gasoline with a total composition CnHn+2, where n = 5 to 7. Its components are distillation products of crude oil with a low flash point. It is a colourless liquid mixture which main components are: n-heptane, neohexane and cyclopentane. The evaporation characteristics of such a drop with the addition of ethanol are also given. The result of the conducted research is the loss of mass during the drop carried above the surface with temperature above the Leidefrost point.


2019 ◽  
Vol 1 (1) ◽  
pp. 33-40
Author(s):  
Ömer Faruk Ulusoy ◽  
Erkan Pektaş

Energy efficiency is a set of measures to prevent the loss of energy in gas, steam, air and electricity, to reduce energy demand by recycling and evaluating various wastes, or to reduce production by advanced technology, more efficient energy resources, advanced industrial processes, and energy recovery.  The International Energy Agency announced that world energy consumption increased by 45% since 1980 and would be 70% higher by 2030 [1]. The energy policy of the future will be on saving, energy efficiency and renewable energy trilogy. Today, with the industrial revolution, the environmental problems and the damages caused by the world we live in today have reached the dimensions that threaten human health and ecological balance. Considering that the energy consumed in the world is in buildings, every measure that reduces energy consumption is very important in terms of improving life conditions. For this purpose, the importance of renewable energy sources in the design of energy architecture principles in energy efficiency and sustainable environments is stated.


Author(s):  
Roberto De Lieto Vollaro ◽  
Emanuele De Lieto Vollaro

Buildings represent 32% of total final energy consumption. In terms of primary energy consumption, buildings represent around 40% in most IEA countries (International Energy Agency). For such reason, strategies that lead to energy savings and greenhouse gases reduction are needed. This research aims to provide a methodology able to identify the best system configuration from a technical, economic and environmental point of view by using at the same time two energy software: Design builder, which is able to calculate buildings energy needs under dynamic conditions, and RETScreen, which allows feasibility analysis of clean energy projects. In order to assess the effectiveness of this operating procedure, a historical building has been modelled and a Combined Cooling, Heat and Power system based on an internal combustion engine has been chosen to ensure environmentally sound way. In this study it shows the application of the procedure to a case study as an historical building located in Orte City which is near Rome in Italy; the methodology could get a real preliminary analysis for choose the best active or passive system for improve the energy efficiency and environmental sustainability of existing buildings, also allowing a cost-benefit analysis useful for the concrete realization of the interventions studied.


1999 ◽  
Author(s):  
Curtis A. Palmer ◽  
Allan Kolker ◽  
Jason C. Willett ◽  
Stanley J. Mroczkowski ◽  
Robert B. Finkelman ◽  
...  

2021 ◽  
pp. 1-21
Author(s):  
Christian Downie

Abstract In policy domains characterised by complexity, international organizations (IOs) with overlapping mandates and governance functions regularly interact in ways that have important implications for global governance. Yet the dynamics of IO interactions remain understudied. This article breaks new ground by building on the theoretical insights of organizational ecology to examine IO competition, cooperation, and adaptation in the domain of energy. Drawing on original empirical data, I consider three related hypotheses: (1) competition between IOs in the same population is likely to centre on material resources; (2) IOs are more likely to cooperate when they have a shared governance goal; and (3) individual IOs can adapt by changing their goals and boundaries. In considering these hypotheses, this article highlights the limits of the organizational ecology approach and the need to broaden it to account for the possibility that IOs do cooperate, and that individual IOs, such as the International Energy Agency, have the capacity to adapt to changes in their environment.


2020 ◽  
Author(s):  
Mohammed Abdo Alwani ◽  
Mohammed Ahmad Soliman

Abstract The objective of this paper is to showcase successful and innovative means and techniques to improve and enhance centrifugal gas compressors (CGCs) performance, using methods to minimize power consumption, with no need for capital investment. These techniques will assure, if effectively followed, considerable reduction of the consumed energy. CGCs are the most widely used equipment in the oil and gas industry to boost gas, mainly hydrocarbons, to satisfy process treatments and pipeline requirements. In addition, CGCs are one of the major energy consumers, and therefore present an exceptional opportunity for saving energy. Focusing on lowering inlet gas temperatures, considering suction throttling of discharge pressure instead of the traditional discharge throttling, will help to reduce energy consumption. In this paper, a detailed analysis of factors aggravate or lead to undesired CGCs performance will be discussed along with solutions to minimize adverse impact. For example, operating the gas compressors at relatively high inlet temperature will result in higher energy consumption. After performing need analysis, results prove that we would save 3-7% of running compressors consumed energy. In addition, during compressor design phase, it was found that most motor driven compressor system uses discharge throttling, which incurs high-energy consumption. Instead, it is recommended to consider suction throttling to control discharge pressure, as will be explained. This paper will focus on a detailed case study in one of the running CGCs in an upstream gas-oil separation plant (GOSP-A). This paper proves the effectiveness of the proposed techniques in reinstating the CGCs in GOSP-A, to ensure better performance and save energy. This innovative technique is based on extensive process data analysis — evaluating operating, design data, related performance curves, and reviewing international standards. It will be illustrated that this type of analysis and techniques is a valuable tool for saving energy, in most cases, at oil and gas industries


Sign in / Sign up

Export Citation Format

Share Document