scholarly journals Multivariate Discriminant Analysis of Single Seed Near Infrared Spectra for Sorting Dead-Filled and Viable Seeds of Three Pine Species: Does One Model Fit All Species?

Forests ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 469 ◽  
Author(s):  
Mulualem Tigabu ◽  
Abolfazl Daneshvar ◽  
Ren Jingjing ◽  
Pengfei Wu ◽  
Xiangqing Ma ◽  
...  

Seed lots of pine species are composed of viable, dead-filled and empty seeds, and the success of complete sorting of dead-filled seeds using the conventional method (Incubation, Drying and Separation in water) is difficult to achieve; leaving a considerable scope for upgrading the sorting efficiency. The objective of this study was to evaluate the prospect of sorting viable and dead-filled seeds of pine species using Near Infrared (NIR) spectroscopy. To demonstrate this, dead-filled and viable seeds of Mason’s pine, slash pine and loblolly pine were incubated in moist medium for three days, dried for six hours and scanned by XDS Rapid Content Analyzer from 780–2500 nm. Orthogonal Projection to Latent Structure-Discriminant Analysis was used to develop discriminant models for each species separately and for all species combined. The results showed that the sensitivity (the model’s ability to correctly classify members of a given class) and the specificity (the model’s ability to reject non-members of a given class) were 100% for each species model and 98%–99% for combined species model. The overall classification accuracy was 100% and 99% for individual species and combined species models, respectively. The absorption band in the 1870–1950 nm with a major peak at 1930 nm, which is related to water, was responsible for discrimination as dead-filled seeds dried quicker than viable seeds during the drying process. Our study is the first attempt to simultaneously discriminate dead-filled and viable seeds of pines by NIR spectroscopy. The results demonstrates that a global calibration model of seed lots of several pine species can be equally effective as the individual species model to discriminate viable and dead-filled seeds by NIR spectroscopy, thereby ensuring precision sowing (also known as single seed sowing) in nurseries.

Author(s):  
Ilaria Lanza ◽  
Daniele Conficoni ◽  
Stefania Balzan ◽  
Marco Cullere ◽  
Luca Fasolato ◽  
...  

Abstract Near-infrared (NIR) spectroscopy is a rapid technique able to assess meat quality even if its capability to determine the shelf life of chicken fresh cuts is still debated, especially for portable devices. The aim of the study was to compare bench-top and portable NIR instruments in discriminating between four chicken breast refrigeration times (RT), coupled with multivariate classifier models. Ninety-six samples were analysed by both NIR tools at 2, 6, 10 and 14 days post-mortem. NIR data were subsequently submitted to partial least squares discriminant analysis (PLS-DA) and canonical discriminant analysis (CDA). The latter was preceded by double feature selection based on Boruta and Stepwise procedures. PLS-DA sorted moderate separation of RT theses, while shelf life assessment was more accurate on application of Stepwise-CDA. Bench-top tool had better performance than portable one, probably because it captured more informative spectral data as shown by the variable importance in projection (VIP) and restricted pool of Stepwise-CDA predictive scores (SPS). NIR tools coupled with a multivariate model provide deep insight into the physicochemical processes occurring during storage. Spectroscopy showed reliable effectiveness to recognise a 7-day shelf life threshold of breasts, suitable for routine at-line application for screening of meat quality.


2021 ◽  
pp. 096703352098731
Author(s):  
Adenilton C da Silva ◽  
Lívia PD Ribeiro ◽  
Ruth MB Vidal ◽  
Wladiana O Matos ◽  
Gisele S Lopes

The use of alcohol-based hand sanitizers is recommended as one of several strategies to minimize contamination and spread of the COVID-19 disease. Current reports suggest that the virucidal potential of ethanol occurs at concentrations close to 70%. Traditional methods of verifying the ethanol concentration in such products invite potential errors due to the viscosity of chemical components or may be prohibitively expensive to undertake in large demand. Near infrared (NIR) spectroscopy and chemometrics have already been used for the determination of ethanol in other matrices and present an alternative fast and reliable approach to quality control of alcohol-based hand sanitizers. In this study, a portable NIR spectrometer combined with classification chemometric tools, i.e., partial least square discriminant analysis (PLS–DA) and linear discriminant analysis with successive algorithm projection (SPA–LDA) were used to construct models to identify conforming and non-conforming commercial and laboratory synthesized hand sanitizer samples. Principal component analysis (PCA) was applied in an exploratory data study. Three principal components accounted for 99% of data variance and demonstrate clustering of conforming and non-conforming samples. The PLS–DA and SPA–LDA classification models presented 77 and 100% of accuracy in cross/internal validation respectively and 100% of accuracy in the classification of test samples. A total of 43% commercial samples evaluated using the PLS–DA and SPA–LDA presented ethanol content non-conforming for hand sanitizer gel. These results indicate that use of NIR spectroscopy and chemometrics is a promising strategy, yielding a method that is fast, portable, and reliable for discrimination of alcohol-based hand sanitizers with respect to conforming and non-conforming ethanol concentrations.


2020 ◽  
Vol 28 (4) ◽  
pp. 224-235
Author(s):  
Irina M Benson ◽  
Beverly K Barnett ◽  
Thomas E Helser

Applications of Fourier transform near infrared (FT-NIR) spectroscopy in fisheries science are currently limited. This current analysis of otolith spectral data demonstrate the potential applicability of FT-NIR spectroscopy to otolith chemistry and spatial variability in fisheries science. The objective of this study was to examine the use of NIR spectroscopy as a tool to differentiate among marine fishes in four large marine ecosystems. We examined otoliths from 13 different species, with three of these species coming from different regions. Principal component analysis described the main directions along which the specimens were separated. The separation of species and their ecosystems may suggest interactions between fish phylogeny, ontogeny, and environmental conditions that can be evaluated using NIR spectroscopy. In order to discriminate spectra across ecosystems and species, four supervised classification model techniques were utilized: soft independent modelling of class analogies, support vector machine discriminant analysis, partial least squares discriminant analysis, and k-nearest neighbor analysis (KNN). This study showed that the best performing model to classify combined ecosystems, all four ecosystems, and species was the KNN model, which had an overall accuracy rate of 99.9%, 97.6%, and 91.5%, respectively. Results from this study suggest that further investigations are needed to determine applications of NIR spectroscopy to otolith chemistry and spatial variability.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jiao Wang ◽  
Yichun Sun ◽  
Zhan Li ◽  
Wei Li ◽  
Yuanyuan Pang ◽  
...  

To evaluate the quality of Salvia miltiorrhiza Bunge, high-performance liquid chromatography-diode array detector (HPLC/UV-PAD), near infrared (NIR) spectroscopy, and chemometrics were used to discriminate nine components of samples from four different geographical locations. HPLC was performed with a C18 (5 μm, 4.6 mm × 250 mm) column and 0.1% formic acid aqueous solution-acetonitrile with a gradient elution system. Orthogonal partial least squares discriminant analysis was used to identify the amounts of salvianolic acid B. NIR was used to distinguish rapidly S. miltiorrhiza Bunge samples from different geographical locations. In this assay, discriminant analysis was performed, and the accuracy was found to be 100%. The combination of these two methods can be used to quickly and accurately identify S. miltiorrhiza Bunge from different geographical locations.


1998 ◽  
Vol 6 (A) ◽  
pp. A117-A123 ◽  
Author(s):  
L. R. Schimleck ◽  
A. J. Michell ◽  
C. A. Raymond ◽  
A. Muneri

In Australia, considerable effort has been directed at improving the pulp yield of plantation grown trees through tree breeding programs. However, an improvement in pulp yield relies on the assessment of large numbers of trees. Traditional methods of assessment are expensive, time consuming and destructive, inhibiting their use. Cores can be extracted non-destructively from standing trees using TRECOR, a handheld motor driven drill. The cores are milled, their near-infrared spectra obtained and pulp yield estimated using an appropriate calibration model. The height at which the core is taken is very important. It must represent the whole tree and sampling must be easy and practical. The longitudinal and radial (within-tree) variation of pulp yield for 15 Eucalyptus nitens trees was examined using near-infrared (NIR) spectroscopy. The trees were taken from three families (five trees per family) selected for giving high, medium and low pulp yields respectively. Three trees (one from each family) were examined in detail. Maps of within-tree variation of pulp yield were developed. Pulp yield was found to be highly variable within individual trees and between trees of the same family. The yield of samples from 10% of tree height (approximately 2.2 m) gave the best correlation with whole-tree yield. Samples from 5% of tree height (approximately 1.1 m) gave a slightly lower correlation but provided a more convenient sampling height. Ten Eucalyptus globulus and ten E. nitens trees growing on five sites in Australia were used to examine the longitudinal variation of pulp yield. Trees from sites in Tasmania, Western Australia and Victoria were sampled. The optimal sampling height for E. globulus was 1.1 m. No single sampling height could be recommended for E. nitens due to large site effects.


2020 ◽  
Vol 12 (5) ◽  
pp. 701-705 ◽  
Author(s):  
Vitória Maria Almeida Teodoro de Oliveira ◽  
Michel Rocha Baqueta ◽  
Paulo Henrique Março ◽  
Patrícia Valderrama

The present study evaluated the potential of near-infrared (NIR) spectroscopy coupled with partial least squares with discriminant analysis (PLS-DA) for the authentication of organic sugars.


2020 ◽  
Vol 38 (No. 2) ◽  
pp. 131-136
Author(s):  
Wojciech Poćwiardowski ◽  
Joanna Szulc ◽  
Grażyna Gozdecka

The aim of the study was to elaborate a universal calibration for the near infrared (NIR) spectrophotometer to determine the moisture of various kinds of vegetable seeds. The research was conducted on the seeds of 5 types of vegetables – carrot, parsley, lettuce, radish and beetroot. For the spectra correlation with moisture values, the method of partial least squares regression (PLS) was used. The resulting qualitative indicators of a calibration model (R = 0.9968, Q = 0.8904) confirmed an excellent fit of the obtained calibration to the experimental data. As a result of the study, the possibilities of creating a calibration model for NIR spectrophotometer for non-destructive moisture analysis of various kinds of vegetable seeds was confirmed.<br /><br />


2020 ◽  
Vol 28 (5-6) ◽  
pp. 308-314
Author(s):  
Emilie Champagne ◽  
Michaël Bonin ◽  
Alejandro A Royo ◽  
Jean-Pierre Tremblay ◽  
Patricia Raymond

Terpenes are phytochemicals found in multiple plant genera, especially aromatic herbs and conifers. Terpene content quantification is costly and complex, requiring the extraction of oil content and gas chromatography analyses. Near infrared (NIR) spectroscopy could provide an alternative quantitative method, especially if calibration can be developed with the spectra of dried plant material, which are easier and faster to acquire than oil-based spectra. Here, multispecies NIR spectroscopy calibrations were developed for total terpene content (mono- and sesquiterpenes) and for specific terpenes (α-pinene, β-pinene and myrcene) with five conifers species ( Picea glauca, Picea rubens, Pinus resinosa, Pinus strobus and Thuja occidentalis). The terpene content of fresh shoot samples was quantified with gas chromatography. The NIR spectra were measured on freeze-dried samples (n = 137). Using a subset of the samples, modified partial least squares regressions of total terpene and the three individual terpenes content were generated as a functions of the NIR spectra. The standard errors of the internal cross-validations (values between 0.25 and 2.28) and the ratio of prediction to deviation ratios (RPD values between 2.20 and 2.38) indicate that all calibrations have similar accuracy. The independent validations, however, suggest that the calibrations for total terpene and α-pinene content are more accurate (respective coefficient of determination: r2 = 0.85 and 0.82). In contrast, calibrations for β-pinene and myrcene had a low accuracy (respectively: r2 = 0.62 and 0.08), potentially because of the low concentration of these terpenes in the species studied. The calibration model fits (i.e., r2) are comparable to previously published calibration using the spectra of dried shoot samples and demonstrate the potential of this method for terpenes in conifer samples. The calibration method used could be useful in several other domains (e.g. seedling breeding program, industrial), because of the wide distribution of terpenes and especially of pinenes.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Mohd Yusop Nurida ◽  
Dolmat Norfadilah ◽  
Mohd Rozaiddin Siti Aishah ◽  
Chan Zhe Phak ◽  
Syafiqa M. Saleh

The analytical methods for the determination of the amine solvent properties do not provide input data for real-time process control and optimization and are labor-intensive, time-consuming, and impractical for studies of dynamic changes in a process. In this study, the potential of nondestructive determination of amine concentration, CO2 loading, and water content in CO2 absorption solvent in the gas processing unit was investigated through Fourier transform near-infrared (FT-NIR) spectroscopy that has the ability to readily carry out multicomponent analysis in association with multivariate analysis methods. The FT-NIR spectra for the solvent were captured and interpreted by using suitable spectra wavenumber regions through multivariate statistical techniques such as partial least square (PLS). The calibration model developed for amine determination had the highest coefficient of determination (R2) of 0.9955 and RMSECV of 0.75%. CO2 calibration model achieved R2 of 0.9902 with RMSECV of 0.25% whereas the water calibration model had R2 of 0.9915 with RMSECV of 1.02%. The statistical evaluation of the validation samples also confirmed that the difference between the actual value and the predicted value from the calibration model was not significantly different and acceptable. Therefore, the amine, CO2, and water models have given a satisfactory result for the concentration determination using the FT-NIR technique. The results of this study indicated that FT-NIR spectroscopy with chemometrics and multivariate technique can be used for the CO2 solvent monitoring to replace the time-consuming and labor-intensive conventional methods.


NIR news ◽  
2017 ◽  
Vol 28 (7) ◽  
pp. 16-21
Author(s):  
Xuan Luo ◽  
Akifumi Ikehata ◽  
Kunio Sashida ◽  
Shanji Piao ◽  
Tsutomu Okura ◽  
...  

A major concern for the practical use of NIR spectroscopy is calibration transfer. In this study, different ways of calibration transfer were tried and compared to seek the optimal solution for our developed portable NIR spectrometers, which are designed for rapid diagnosis of bovine anemia due to parasites and are believed to be promising to replace the current time-consuming centrifugation way of measuring Hematocrit value (%) for final diagnosis. Our results show the importance of a robust model during the process of calibration transfer. It is risky to transfer a model which is not robust enough by using standardization algorithm.


Sign in / Sign up

Export Citation Format

Share Document