scholarly journals Impacts of Climate Change on Hydroclimatic Conditions of U.S. National Forests and Grasslands

Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 139
Author(s):  
Hadi Heidari ◽  
Travis Warziniack ◽  
Thomas C. Brown ◽  
Mazdak Arabi

The conterminous United States includes national forests and grasslands that provide ecological, social, economic, recreational, and aesthetic services. Future climate change can alter long-term hydroclimatic conditions of national forests and grasslands and lead to negative consequences. This study characterizes shifts in hydroclimatology and basin characteristics of US National Forests (NFs) and National Grasslands (NGs) in response to climate change over the 21st century under the DRY, MIDDLE, and WET climate models with the representative concentration pathway (RCP) 8.5 emission scenario. Climatic projections for three climate models ranging from the driest to wettest conditions were obtained from the Multivariate Adaptive Constructed Analogs (MACA) dataset. Then, the variable infiltration capacity (VIC) model was used to model hydrological responses of the selected future climates. Changes in regional hydroclimatic conditions of NFs and NGs were assessed by the magnitude and direction of movements in the Budyko space. The Fu’s equation was applied to estimate changes in basin characteristics. The results indicate that NFs and NGs are likely to experience larger changes in basin characteristics compared to the average of the United States. In general, across the conterminous US, the NFs in mountainous regions are likely to have larger changes in hydroclimatic variables than NFs with lower elevation and NGs. Comparing Forest Service regions, Pacific Northwest, Intermountain, and Northern regions may have a less arid climate with lower freshwater availability. The Southwestern, Northern, Intermountain, and Rocky Mountain regions are likely to experience higher shifts in their basin characteristics. This study can help environmental scientists, and land and water managers improve future land management plans.

2021 ◽  
Author(s):  
Brandi Gamelin ◽  
Jiali Wang ◽  
V. Rao Kotamarthi

<p>Flash droughts are the rapid intensification of drought conditions generally associated with increased temperatures and decreased precipitation on short time scales.  Consequently, flash droughts are responsible for reduced soil moisture which contributes to diminished agricultural yields and lower groundwater levels. Drought management, especially flash drought in the United States is vital to address the human and economic impact of crop loss, diminished water resources and increased wildfire risk. In previous research, climate change scenarios show increased growing season (i.e. frost-free days) and drying in soil moisture over most of the United States by 2100. Understanding projected flash drought is important to assess regional variability, frequency and intensity of flash droughts under future climate change scenarios. Data for this work was produced with the Weather Research and Forecasting (WRF) model. Initial and boundary conditions for the model were supplied by CCSM4, GFDL-ESM2G, and HadGEM2-ES and based on the 8.5 Representative Concentration Pathway (RCP8.5). The WRF model was downscaled to a 12 km spatial resolution for three climate time frames: 1995-2004 (Historical), 2045-2054 (Mid), and 2085-2094 (Late).  A key characteristic of flash drought is the rapid onset and intensification of dry conditions. For this, we identify onset with vapor pressure deficit during each time frame. Known flash drought cases during the Historical run are identified and compared to flash droughts in the Mid and Late 21<sup>st</sup> century.</p>


2020 ◽  
Vol 20 (14) ◽  
pp. 8827-8838
Author(s):  
Yang Li ◽  
Loretta J. Mickley ◽  
Pengfei Liu ◽  
Jed O. Kaplan

Abstract. Almost USD 3 billion per year is appropriated for wildfire management on public land in the United States. Recent studies have suggested that ongoing climate change will lead to warmer and drier conditions in the western United States, with a consequent increase in the number and size of wildfires, yet large uncertainty exists in these projections. To assess the influence of future changes in climate and land cover on lightning-caused wildfires in the national forests and parks of the western United States and the consequences of these fires on air quality, we link a dynamic vegetation model that includes a process-based representation of fire (LPJ-LMfire) to a global chemical transport model (GEOS-Chem). Under a scenario of moderate future climate change (RCP4.5), increasing lightning-caused wildfire enhances the burden of smoke fine particulate matter (PM), with mass concentration increases of ∼53 % by the late 21st century during the fire season in the national forests and parks of the western United States. In a high-emissions scenario (RCP8.5), smoke PM concentrations double by 2100. RCP8.5 also shows enhanced lightning-caused fire activity, especially over forests in the northern states.


2021 ◽  
Author(s):  
Yabin Da ◽  
Yangyang Xu ◽  
Bruce McCarl

<p>Surface ozone pollution has been proven to impose significant damages on crops. However, the quantification of the damages was extensively derived from chamber experiments, which is not representative of actual results in farm fields due to the limitations of spatial scale, time window, etc. In this work, we attempt to empirically fill this gap using county-level data in the United States from 1980 to 2015. We explore ozone impacts on corn, soybeans, spring wheat, winter wheat, barley, cotton, peanuts, rice, sorghum, and sunflower. We also incorporate a variety of climate variables to investigate potential ozone-climate interactions. More importantly, we shed light on future yield consequences of ozone and climate change individually and jointly under a moderate warming scenario. Our findings suggest significant negative impacts of ozone exposure for eight of the ten crops we examined, excepting barley and winter wheat, which contradicts experimental results. The average annual damages were estimated at $6.03 billion (in 2015 U.S. dollar) from 1980 to 2015. We also find rising temperatures tend to worsen ozone damages while water supply would mitigate that. Finally, elevated ozone driven by future climate change would cause much smaller damages than the direct effects of climate change itself.</p>


2012 ◽  
Vol 14 (02) ◽  
pp. 1250011 ◽  
Author(s):  
ANTHONY JACKSON ◽  
BARBARA ILLSLEY ◽  
WILLIAM LYNCH

The impact of environmental governance on the delivery of local climate change plans is examined by comparing two transatlantic sub-national jurisdictions which have adopted stringent targets for reducing greenhouse gas emissions: Scotland and the Pacific Northwest region of the United States of America. The former relies on dirigiste top-down environmental governance, through which central government sets targets and imposes statutory duties that apply equally to all local councils. In the latter, a bottom-up multi-level form of environmental governance has emerged to compensate for the absence of a federal mandate. Specific action plans from a climate change pioneer in each location are assessed to test the strengths and limitations of these alternative modes of environmental governance: Portland in Oregon and Fife in Scotland. The Scottish dirigiste approach offers its local councils a consistent policy framework, allowing them to focus on specific measures to reduce greenhouse gas emissions, while avoiding concerns about free-rider effects from non-participating councils. The asymmetrical uptake of climate change measures by United States municipalities exposes their domestic market to the risks of carbon leakage that America sought to avoid in global markets during negotiations over the Kyoto Protocol.


Leonardo ◽  
2018 ◽  
Vol 51 (3) ◽  
pp. 287-288
Author(s):  
Leslie Sharpe

This paper discusses Leslie Sharpe’s sound and sculpture installation project “Beak Disorder,” exhibited at Manizales, Columbia for Balance-Unbalance 2016. The work addresses how anthropogenic climate change may be affecting birds in the Pacific Northwest regions of Canada and the United States. “Beak Disorder” is a project that references an unexplained condition documented in birds in the Northwest of Canada and Alaska called “avian keratin disorder” where the bird’s beak becomes distorted and elongated. The work includes a series of 3D printed distorted beaks as well as a sound piece and web component.


2016 ◽  
Vol 29 (7) ◽  
pp. 2621-2633 ◽  
Author(s):  
Mingkai Jiang ◽  
Benjamin S. Felzer ◽  
Dork Sahagian

Abstract The proper understanding of precipitation variability, seasonality, and predictability are important for effective environmental management. Precipitation and its associated extremes vary in magnitude and duration both spatially and temporally, making it one of the most challenging climate parameters to predict on the basis of global and regional climate models. Using information theory, an improved understanding of precipitation predictability in the conterminous United States over the period of 1949–2010 is sought based on a gridded monthly precipitation dataset. Predictability is defined as the recurrent likelihood of patterns described by the metrics of magnitude variability and seasonality. It is shown that monthly mean precipitation and duration-based dry and wet extremes are generally highly variable in the east compared to those in the west, while the reversed spatial pattern is observed for intensity-based wetness indices except along the Pacific Northwest coast. It is thus inferred that, over much of the U.S. landscape, variations of monthly mean precipitation are driven by the variations in precipitation occurrences rather than the intensity of infrequent heavy rainfall. It is further demonstrated that precipitation seasonality for means and extremes is homogeneously invariant within the United States, with the exceptions of the West Coast, Florida, and parts of the Midwest, where stronger seasonality is identified. A proportionally higher role of variability in regulating precipitation predictability is demonstrated. Seasonality surpasses variability only in parts of the West Coast. The quantified patterns of predictability for precipitation means and extremes have direct applications to those phenomena influenced by climate periodicity, such as biodiversity and ecosystem management.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 981
Author(s):  
Hadi Heidari ◽  
Mazdak Arabi ◽  
Travis Warziniack

Climate change, with warming temperatures and shifting precipitation patterns, may increase natural-caused forest fire activity. Increasing natural-caused fires throughout western United States national forests could place people, property, and infrastructure at risk in the future. We used the fine K nearest neighbor (KNN) method coupled with the downscaled Multivariate Adaptive Constructed Analogs (MACA) climate dataset to estimate changes in the rate of natural-caused fires in western United States national forests. We projected changes in the rate of minor and major forest fires from historical (1986–2015) to future (2070–2099) conditions to characterize fire-prone national forests under a range of climate change scenarios. The results indicate that climate change can add to the occurrence of forest fires in western United States national forests, particularly in Rocky Mountain, Pacific Southwest, and Southwestern United States Forest Service regions. Although summer months are projected to have the highest rate of natural-caused forest fire activity in the future, the rate of natural-caused forest fires is likely to increase from August to December in the future compared to the historical conditions. Improved understanding of altered forest fire regimes can help forest managers to better understand the potential effects of climate change on future fire activity and implement actions to attenuate possible negative consequences.


2009 ◽  
Vol 2 (3) ◽  
pp. 200-215 ◽  
Author(s):  
Becky K. Kerns ◽  
Bridgett J. Naylor ◽  
Michelle Buonopane ◽  
Catherine G. Parks ◽  
Brendan Rogers

AbstractTamarisk species are shrubs or small trees considered by some to be among the most aggressively invasive and potentially detrimental exotic plants in the United States. Although extensively studied in the southern and interior west, northwestern (Oregon, Washington, and Idaho) distribution and habitat information for tamarisk is either limited or lacking. We obtained distribution data for the northwest, developed a habitat suitability map, and projected changes in habitat due to climate change in a smaller case study area using downscaled climate data. Results show extensive populations of tamarisk east of the Cascade Mountains. Despite the perceived novelty of tamarisk in the region, naturalized populations were present by the 1920s. Major population centers are limited to the warmest and driest environments in the central Snake River Plain, Columbia Plateau, and Northern Basin and Range. Habitat suitability model results indicate that 21% of the region supports suitable tamarisk habitat. Less than 1% of these areas are occupied by tamarisk; the remainder is highly vulnerable to invasion. Although considerable uncertainty exists regarding future climate change, we project a 2- to 10-fold increase in highly suitable tamarisk habitat by the end of the century. Our habitat suitability maps can be used in “what if” exercises as part of planning, detection, restoration, management, and eradication purposes.


Sign in / Sign up

Export Citation Format

Share Document