scholarly journals Nutrient Balance as a Tool for Maintaining Yield and Mitigating Environmental Impacts of Acacia Plantation in Drained Tropical Peatland—Description of Plantation Simulator

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 312
Author(s):  
Ari Laurén ◽  
Marjo Palviainen ◽  
Susan Page ◽  
Chris Evans ◽  
Iñaki Urzainki ◽  
...  

Responsible management of Acacia plantations requires an improved understanding of trade-offs between maintaining stand production whilst reducing environmental impacts. Intensive drainage and the resulting low water tables (WT) increase carbon emissions, peat subsidence, fire risk and nutrient export to water courses, whilst increasing nutrient availability for plant uptake from peat mineralization. In the plantations, hydrology, stand growth, carbon and nutrient balance, and peat subsidence are connected forming a complex dynamic system, which can be thoroughly understood by dynamic process models. We developed the Plantation Simulator to describe the effect of drainage, silviculture, fertilization, and weed control on the above-mentioned processes and to find production schemes that are environmentally and economically viable. The model successfully predicted measured peat subsidence, which was used as a proxy for stand total mass balance. Computed nutrient balances indicated that the main growth-limiting factor was phosphorus (P) supply, and the P balance was affected by site index, mortality rate and WT. In a scenario assessment, where WT was raised from −0.80 m to −0.40 m the subsidence rate decreased from 4.4 to 3.3 cm yr−1, and carbon loss from 17 to 9 Mg ha−1 yr−1. P balance shifted from marginally positive to negative suggesting that additional P fertilization is needed to maintain stand productivity as a trade-off for reducing C emissions.

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1472
Author(s):  
Ilaria Piccoli ◽  
Felice Sartori ◽  
Riccardo Polese ◽  
Maurizio Borin ◽  
Antonio Berti

Agri-environmental indicators such as nutrient balance may play a key role in soil and water quality monitoring, although short-term experiments might be unable to capture the sustainability of cropping systems. Therefore, the objectives of this study are: (i) to evaluate the reliability of long-term experimental N and P balance estimates to predict real field (RF) (i.e., short-term transitory) conditions; and (ii) to compare the sustainability of short- and long-term experiments. The LTE-based predictions showed that crops are generally over-fertilised in RF conditions, particularly maize. Nutrient balance predictions based on the LTE data tended to be more optimistic than those observed under RF conditions, which are often characterised by lower outputs; in particular, 13, 44, and 47% lower yields were observed for winter wheat, maize, and soybean, respectively, under organic management. The graphical evaluation of N and P use efficiency demonstrated the benefit of adopting crop rotation practices and the risk of nutrient loss when liquid organic fertiliser was applied on a long-term basis. In conclusion, LTE predictions may depend upon specific RF conditions, representing potential N and P use efficiencies that, in RF, may be reduced by crop yield-limiting factors and the specific implemented crop sequence.


Author(s):  
Marc Jaxa-Rozen ◽  
Astu Sam Pratiwi ◽  
Evelina Trutnevyte

Abstract Purpose Global sensitivity analysis increasingly replaces manual sensitivity analysis in life cycle assessment (LCA). Variance-based global sensitivity analysis identifies influential uncertain model input parameters by estimating so-called Sobol indices that represent each parameter’s contribution to the variance in model output. However, this technique can potentially be unreliable when analyzing non-normal model outputs, and it does not inform analysts about specific values of the model input or output that may be decision-relevant. We demonstrate three emerging methods that build on variance-based global sensitivity analysis and that can provide new insights on uncertainty in typical LCA applications that present non-normal output distributions, trade-offs between environmental impacts, and interactions between model inputs. Methods To identify influential model inputs, trade-offs, and decision-relevant interactions, we implement techniques for distribution-based global sensitivity analysis (PAWN technique), spectral clustering, and scenario discovery (patient rule induction method: PRIM). We choose these techniques because they are applicable with generic Monte Carlo sampling and common LCA software. We compare these techniques with variance-based Sobol indices, using a previously published LCA case study of geothermal heating networks. We assess eight environmental impacts under uncertainty for three design alternatives, spanning different geothermal production temperatures and heating network configurations. Results In the application case on geothermal heating networks, PAWN distribution-based sensitivity indices generally identify influential model parameters consistently with Sobol indices. However, some discrepancies highlight the potentially misleading interpretation of Sobol indices on the non-normal distributions obtained in our analysis, where variance may not meaningfully describe uncertainty. Spectral clustering highlights groups of model results that present different trade-offs between environmental impacts. Compared to second-order Sobol interaction indices, PRIM then provides more precise information regarding the combinations of input values associated with these different groups of calculated impacts. PAWN indices, spectral clustering, and PRIM have a computational advantage because they yield stable results at relatively small sample sizes (n = 12,000), unlike Sobol indices (n = 100,000 for second-order indices). Conclusions We recommend adding these new techniques to global sensitivity analysis in LCA as they give more precise as well as additional insights on uncertainty regardless of the distribution of the model outputs. PAWN distribution-based global sensitivity analysis provides a computationally efficient assessment of input sensitivities as compared to variance-based global sensitivity analysis. The combination of clustering and scenario discovery enables analysts to precisely identify combinations of input parameters or uncertainties associated with different outcomes of environmental impacts.


Buildings ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 105 ◽  
Author(s):  
Nadia MIRABELLA ◽  
Martin RÖCK ◽  
Marcella Ruschi Mendes SAADE ◽  
Carolin SPIRINCKX ◽  
Marc BOSMANS ◽  
...  

Globally, the building sector is responsible for more than 40% of energy use and it contributes approximately 30% of the global Greenhouse Gas (GHG) emissions. This high contribution stimulates research and policies to reduce the operational energy use and related GHG emissions of buildings. However, the environmental impacts of buildings can extend wide beyond the operational phase, and the portion of impacts related to the embodied energy of the building becomes relatively more important in low energy buildings. Therefore, the goal of the research is gaining insights into the environmental impacts of various building strategies for energy efficiency requirements compared to the life cycle environmental impacts of the whole building. The goal is to detect and investigate existing trade-offs in current approaches and solutions proposed by the research community. A literature review is driven by six fundamental and specific research questions (RQs), and performed based on two main tasks: (i) selection of literature studies, and (ii) critical analysis of the selected studies in line with the RQs. A final sample of 59 papers and 178 case studies has been collected, and key criteria are systematically analysed in a matrix. The study reveals that the high heterogeneity of the case studies makes it difficult to compare these in a straightforward way, but it allows to provide an overview of current methodological challenges and research gaps. Furthermore, the most complete studies provide valuable insights in the environmental benefits of the identified energy performance strategies over the building life cycle, but also shows the risk of burden shifting if only operational energy use is focused on, or when a limited number of environmental impact categories are assessed.


Science ◽  
2018 ◽  
Vol 360 (6392) ◽  
pp. 987-992 ◽  
Author(s):  
J. Poore ◽  
T. Nemecek

Food’s environmental impacts are created by millions of diverse producers. To identify solutions that are effective under this heterogeneity, we consolidated data covering five environmental indicators; 38,700 farms; and 1600 processors, packaging types, and retailers. Impact can vary 50-fold among producers of the same product, creating substantial mitigation opportunities. However, mitigation is complicated by trade-offs, multiple ways for producers to achieve low impacts, and interactions throughout the supply chain. Producers have limits on how far they can reduce impacts. Most strikingly, impacts of the lowest-impact animal products typically exceed those of vegetable substitutes, providing new evidence for the importance of dietary change. Cumulatively, our findings support an approach where producers monitor their own impacts, flexibly meet environmental targets by choosing from multiple practices, and communicate their impacts to consumers.


Author(s):  
S C Klopatek ◽  
E Marvinney ◽  
T Duarte ◽  
A Kendall ◽  
X Yang ◽  
...  

Abstract Between increasing public concerns over climate change and heightened interest of niche market beef on social media, the demand for grass-fed beef has increased considerably. However, the demand increase for grass-fed beef has raised many producers' and consumers' concerns regarding product quality, economic viability, and environmental impacts that have thus far gone unanswered. Therefore, using a holistic approach, we investigated the performance, carcass quality, financial outcomes, and environmental impacts of four grass-fed and grain-fed beef systems currently being performed by ranchers in California. The treatments included: 1) steers stocked on pasture and feedyard finished for 128 days (CON); 2) steers grass-fed for 20 months (GF20); 3) steers grass-fed for 20 months with a 45-day grain finish (GR45); and 4) steers grass-fed for 25 months (GF25). The data were analyzed using a mixed model procedure in R with differences between treatments determined by Tukey HSD. Using carcass and performance data from these systems, a weaning-to-harvest life cycle assessment (LCA) was developed in the Scalable, Process-based, Agronomically Responsive Cropping Systems model framework, to determine global warming potential (GWP), consumable water use, energy, smog, and land occupation footprints. Final body weight varied significantly between treatments (P <0.001) with the CON cattle finishing at 632 kg, followed by GF25 at 570 kg, GR45 at 551 kg, and GF20 478 kg. Dressing percentage (DP) differed significantly between all treatments (P < 0.001). The DP was 61.8% for CON followed by GR45 at 57.5%, GF25 at 53.4%, and GF20 had the lowest DP of 50.3%. Marbling scores were significantly greater for CON compared to all other treatments (P < 0.001) with CON marbling score averaging 421 (low-choice ≥ 400). Breakeven costs with harvesting and marketing for the CON, GF20, GR45, and GF25 were $6.01, $8.98, $8.02, and $8.33 per kg hot carcass weight (HCW), respectively. The GWP for the CON, GF20, GR45, and GF25 were 4.79, 6.74, 6.65 and 8.31 CO2e/kg HCW, respectively. Water consumptive use for CON, GF20, GR45, and GF25 were 933, 465, 678 and 1250 L /kg HCW, respectively. Energy use for CON, GF20, GR45, and GF25 were 18.7, 7.65, 13.8 and 8.85 MJ /kg HCW, respectively. Our results indicated that grass-fed beef systems differ in both animal performance and carcass quality resulting in environmental and economic sustainability tradeoffs with no system having absolute superiority.


Author(s):  
Judith L. Capper

Abstract The environment impact of livestock production is one of the most significant issues within agriculture. Global concerns over climate change, resource use, pollution and other environment indicators means that producers must implement practices and systems to reduce environmental impacts, yet this may only be achieved through assessments that allow impacts to be quantified, benchmarked and improved over time. Although environmental indicators are widely accepted, the metrics by which these are assessed continue to evolve over time as assessment objectives gain clarity and focus, and as the science relating to controversial topics (e.g. global warming or carbon sequestration) becomes more refined. however, significant negative trade-offs may occur between different metrics and denominators such that a specific practice or system may appear to have greater or lesser impacts, depending on assessment methodology. A number of tools and models have been developed to empower producers in quantifying environmental impacts, which will be increasingly important is satisfying future consumers' hunger for information as well as food. These tools must be supplied in tandem with information as to the potential consequences of changing management practices and systems. At present however, tools available are based on differing methodologies, are often opaque in their background calculations and do not necessarily account for all the factors that influence environmental impacts from livestock. There is a clear need for robust tools that can be used as standards for assessing environmental impacts from the global livestock industry and that go beyond GHG emissions to produce a more rounded holistic assessment.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 856 ◽  
Author(s):  
Canxi Chen ◽  
Abhishek Chaudhary ◽  
Alexander Mathys

Demand side interventions, such as dietary change, can significantly contribute towards the achievement of 2030 national sustainable development goals. However, most previous studies analysing the consequences of dietary change focus on a single dimension of sustainability (e.g., environment) using a limited number of indicators and dietary scenarios. A multi-dimension and multi-indicator analysis can identify the potential trade-offs. Here, starting from the current food consumption data (year 2011), we first designed nine alternative dietary scenarios (healthy Swiss diet, healthy global diet, vegetarian, vegan, pescatarian, flexitarian, protein-oriented and meat-oriented diets and a food greenhouse gas tax diet). Next we calculated three nutritional quality (nutrient balance score, disqualifying nutrient score, percent population with adequate nutrition), five environmental (greenhouse gas, water, land, nitrogen and phosphorus use), one economic (daily food expenditure) and one human health indicator (DALYs) for current and alternative diets. We found that transition towards a healthy diet following the guidelines of Swiss society of nutrition is the most sustainable option and is projected to result in 36% lesser environmental footprint, 33% lesser expenditure and 2.67% lower adverse health outcome (DALYs) compared with the current diet. On the other extreme, transition towards a meat or protein oriented diet can lead to large increases in diet related adverse health outcomes, environmental footprint, daily food expenditure and a reduction in intakes of essential nutrients (for Vitamin C, Fibre, Potassium and Calcium). We found that shifting to the vegetarian and vegan diet scenarios might lead to a reduction in intakes of certain micronutrients currently supplied primarily by animal-sourced foods (Vitamin B12, Choline and Calcium). Results show that achieving a sustainable diet would entail a high reduction in the intake of meat and vegetable oils and a moderate reduction in cereals, roots and fish products and at the same time increased intake of legumes, nuts, seeds, fruits and vegetables. We identify several current data and research gaps that need to be filled in order to get more accurate results. Overall, our analysis underscores the need to consider multiple indicators while assessing the dietary sustainability and provides a template to conduct such studies in other countries and settings. Future efforts should focus on assessing the potential of different interventions and policies that can help transition the population from current to sustainable dietary patterns.


Author(s):  
Courtney E. Grosvenor ◽  
Melissa C. Lott ◽  
Michael E. Webber

The impacts of the U.S. transportation and electricity generation sectors include air emissions and water consumption. Information and communication technologies (ICT) such as advanced video teleconferencing have the potential to displace some activities that have historically required transportation. While ICT can reduce environmental impacts compared to transportation options in many cases, there are non-obvious environmental trade-offs associated with replacing transportation with ICT. These tradeoffs are the consequence of many factors, including the particular local electricity mix, meeting duration, number of meeting participants, travel distances, travel modes, motive transport conversion technologies, and transport fuels. Identifying and quantifying these trade-offs is the focus of this research. For this study, a nomenclature and methodology were developed to compare environmental trade-offs associated with transportation and ICT. The nomenclature was designed to facilitate side-by-side comparison of the environmental impacts of travel and ICT and to allow expansion of the nomenclature for future study. The methodology considered a variety of conversion technologies for motive transport including spark-ignition, compression-ignition, fuel cells, and electric motors. Both conventional and developing fuels were considered including gasoline, ethanol, diesel, biodiesel, natural gas, hydrogen, and electricity. Likewise, electricity consumption for ICT included both traditional and developing electricity generation technologies. Carbon dioxide emissions and water consumption for ICT were assessed for comparison with transportation in a case study that demonstrated use of this methodology by considering three distinct scenarios for a particular business meeting: 1. Two meeting attendees travel to the meeting by diesel city bus while two travel in a private vehicle. 2. All four meeting attendees travel by private vehicle powered by compressed natural gas. 3. The four meeting attendees do not travel, but instead meet their clients virtually via ICT. The case study analyzed in this manuscript considers only the water and carbon dioxide impacts, but the nomenclature developed allows future expansion for analysis of other greenhouse gases. The three scenarios revealed that, compared to short travel distances, use of ICT does not always generate fewer carbon dioxide emissions. Depending on the mode of electricity generation, travel proved to be preferable from an emissions standpoint for scenarios in which travel distances were small. However, in cases that required long distances to travel, ICT often allowed businesses and individuals to reduce their environmental impacts, especially if electric power generation in that location utilized large amounts of relatively low-emissions technologies such as hydroelectric dams, wind, solar, and nuclear. Finally, it should be noted that, in addition to comparing ICT and travel impacts, this methodology can be used to calculate the environmental tradeoffs of various transportation options when travel is a necessity.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1321
Author(s):  
Matthew W. Jordon ◽  
Kathy J. Willis ◽  
William J. Harvey ◽  
Leo Petrokofsky ◽  
Gillian Petrokofsky

The environmental impacts of ruminant livestock farming need to be mitigated to improve the sustainability of food production. These negative impacts have been compounded by the increased spatial and cultural separation of farming and forestry across multiple temperate landscapes and contexts over recent centuries, and could at least in part be alleviated by re-integration of livestock and trees via agroforestry systems. Such integration also has the potential to benefit the productivity and economics of livestock farming. However, the delivery of hoped-for benefits is highly likely to depend on context, which will necessitate the consideration of local synergies and trade-offs. Evaluating the extensive body of research on the synergies and trade-offs between agroforestry and environmental, productivity and economic indicators would provide a resource to support context-specific decision making by land managers. Here, we present a systematic evidence map of academic and grey literature to address the question “What are the impacts of temperate agroforestry systems on sheep and cattle productivity, environmental impacts and farm economic viability?”. We followed good practice guidance from the Collaboration for Environmental Evidence to find and select relevant studies to create an interactive systematic map. We identified 289 relevant studies from 22 countries across temperate regions of North and South America, Australasia and Europe. Our preliminary synthesis indicates that there is an emerging evidence base to demonstrate that temperate agroforestry can deliver environmental and economic benefits compared with pasture without trees. However, to date measures of livestock productivity (particularly weather-related mortality and heat- and cold-stress) have received insufficient attention in many temperate agroforestry systems. The evidence base assembled through this work provides a freely accessible resource applicable across temperate regions to support context-specific decision making.


2016 ◽  
Vol 107 ◽  
pp. 212-219 ◽  
Author(s):  
Mara Hauck ◽  
Francisca A. Maalcke-Luesken ◽  
Mike S.M. Jetten ◽  
Mark A.J. Huijbregts

Sign in / Sign up

Export Citation Format

Share Document