scholarly journals The Role of Canopy Cover Dynamics over a Decade of Changes in the Understory of an Atlantic Beech-Oak Forest

Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 938
Author(s):  
Mercedes Valerio ◽  
Ricardo Ibáñez ◽  
Antonio Gazol

The understory of temperate forests harbour most of the plant species diversity present in these ecosystems. The maintenance of this diversity is strongly dependent on canopy gap formation, a disturbance naturally happening in non-managed forests, which promotes spatiotemporal heterogeneity in understory conditions. This, in turn, favours regeneration dynamics, functioning and structural complexity by allowing changes in light, moisture and nutrient availability. Our aim is to study how gap dynamics influence the stability of understory plant communities over a decade, particularly in their structure and function. The study was carried out in 102 permanent plots (sampled in 2006 and revisited in 2016) distributed throughout a 132 ha basin located in a non-managed temperate beech-oak forest (Bertiz Natural Park, Spain). We related changes in the taxonomical and functional composition and diversity of the understory vegetation to changes in canopy coverage. We found that gap dynamics influenced the species composition and richness of the understory through changes in light availability and leaf litter cover. Species with different strategies related to shade tolerance and dispersion established in the understory following the temporal evolution of gaps. However, changes in understory species composition in response to canopy dynamics occur at a slow speed in old-growth temperate forests, needing more than a decade to really be significant. The presence of gaps persisting more than ten years is essential for maintaining the heterogeneity and stability of understory vegetation in old-growth temperate forests.

2021 ◽  
Vol 4 ◽  
Author(s):  
Jeffrey Opoku-Nyame ◽  
Alain Leduc ◽  
Nicole J. Fenton

Clear cut harvest simplifies and eliminates old growth forest structure, negatively impacting biodiversity. Partial cut harvest has been hypothesized (1) to have less impact on biodiversity than clear cut harvest, and (2) to encourage old growth forest structures. Long-term studies are required to test this hypothesis as most studies are conducted soon after harvest. Using epixylic bryophytes as indicators, this study addresses this knowledge gap. Fourteen years after harvest, we examined changes in epixylic bryophyte community composition richness and traits, and their microhabitats (coarse woody debris characteristics and microclimate) along an unharvested, partial cuts and clear cuts harvest treatment in 30 permanent plots established in the boreal black spruce (Picea mariana) forests of northwestern Quebec, Canada. Our results were compared to those of an initial post-harvest study (year 5) and to a chronosequence of old growth forests to examine species changes over time and the similarity of bryophyte communities in partial cut and old growth forests. Coarse woody debris (CWD) volume by decay class varied among harvest treatments with partial cuts and clear cuts recording lower volumes of early decay CWD. The epixylic community was richer in partial cuts than in mature unharvested forests and clear cuts. In addition, species richness and overall abundance doubled in partial and clear cuts between years 5 and 14. Species composition also differed among treatments between years 5 and 14. Furthermore, conditions in partial cut stands supported small, drought sensitive, and old growth confined species that are threatened by conditions in clear cut stands. Lastly, over time, species composition in partial cuts became more similar to old growth forests. Partial cuts reduced harvest impacts by continuing to provide favorable microhabitat conditions that support epixylic bryophytes. Also, partial cut harvest has the potential to encourage old growth species assemblages, which has been a major concern for biodiversity conservation in managed forest landscapes. Our findings support the promotion of partial cut harvest as an effective strategy to achieve species and habitat conservation goals.


2021 ◽  
Vol 3 (10) ◽  
pp. 46-53
Author(s):  
Alexander Yatsyna ◽  

As a result of the research, the species composition of lichens and closely related fungi of the oak forest of the reserve «Vydritsa» (Republic of Belarus, Gomel Region) has been revealed. An annotated list, including 113 species has been compiled, 106 of these species are lichens, 6 – non-lichenised saprobic and 1 – lichenicolous fungi. Species Calicium adspersum, Cetrelia olivetorum, Chaenotheca chlorella, Cladonia caespiticia, Lobaria pulmonaria and Parmotrema stuppeum are included in the Red Data Book of Belarus and are listed for the first time for the Svetlogorsk district and the reserve «Vydritsa». The indicator lichens of old-growth oak forests include 20 species; 28 species were recorded in all 12 surveyed localities.


2020 ◽  
Vol 63 (2) ◽  
pp. 103-120
Author(s):  
Sergio Fantini ◽  
◽  
Mauro Fois ◽  
Paolo Casula ◽  
Giuseppe Fenu ◽  
...  

Mediterranean forests have been altered by several human activities. Consequently, relatively intact forests that have been unmodified by humans for a relatively long time (i.e., old-growth forests) are often reduced to isolated and fragmented stands. However, despite their high conservation value, little is known about their features and even presence several Mediterranean areas. First steps of their investigation are based on the identification of old-growth features such as amount of large‐size and old trees, tree species composition, canopy heterogeneity, occurrence and amount of deadwood. The Structural Heterogeneity Index (SHI) is commonly used to summarise features of old-growthness in one single value. Here, the SHI was derived for 68 plots included in 45 forest stands within the 4,297 km2 of territory that is covered by forests in Sardinia. SHI values were affected by variables that are likely to be related to forest age and structural complexity, such as presence of cerambycids, canopy cover, forest layers, location and three old-growthness classes. Results confirm a high structural variability among forests with old-growth features, determined by the presence, or lack, of given living and deadwood features. Our findings identified, for the first time, most of the forest stands that need special protection in Sardinia for the presence of old-growth features. In this sense, the SHI was confirmed useful for improving their management and conservation, although more specific and deeper studies are necessary for better understanding their species composition and dynamics.


2021 ◽  
Vol 30 (3) ◽  
pp. e009-e009
Author(s):  
Dárlison Fernandes-Carvalho-de-Andrade ◽  

Aim of the study: To assess structure, recruitment and mortality rates of tree species over almost three decades, 14 years before and 15 years after a forest fire. Material and methods: All trees ≥ 5 cm in DBH were identified and measured in 12 permanent plots (50 m x 50 m), in 1983, 1987, 1989, 1995, 2008, and 2012 of a dense ombrophilous forest in Eastern Amazon, Brazil. The analyses were carried out including all sampled species and their ecological groups: shade-tolerant, light-demanding, and pioneer species. Treatments were compared through a Linear Mixed Effect Model. Main results: The 15-year post-fire period is not enough for the old-growth tropical forest to recover its pre-fire conditions of recruitment and mortality rates. The post-fire recruitment and mortality rates increased, mainly the recruitment of pioneer species (p-value < 0.05). Research highlights: In a period of 15 years after the occurrence of a surface fire, the old-growth tropical forest still has high recruitment rates of shade-tolerant and light-demanding species and high incidence of pioneer species, confirming the persistent fire effects on forest dynamics and species composition in this ecosystem.


Forests ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 81 ◽  
Author(s):  
Peter Jaloviar ◽  
Denisa Sedmáková ◽  
Ján Pittner ◽  
Lucia Jarčušková Danková ◽  
Stanislav Kucbel ◽  
...  

Forest management mimicking natural processes represents an approach to maintain mixed, uneven-aged stands at small spatial scales. The reliance on natural processes, especially on natural regeneration leads to the use of gap-based regeneration as a fundamental silvicultural technique. As a baseline for such management, we investigated mixed forest in unmanaged National Nature Reserve Sitno in the Western Carpathians, which harbours extraordinary diversity on a rather small scale. To quantify the impact of gaps on gap-filling processes and to assess the role they play in recently observed changes in tree species composition we established a large (2.5 ha) permanent research plot and surveyed the status of natural regeneration, forest structure, tree species composition, and disturbance regime. Our research highlights the long-term and contemporary difficulties in the establishment of Quercus petraea (Matt.) Liebl and Fagus sylvatica (L.). Based on the provided evidence, the native tree species diversity in one of the few preserved old-growth multi-species beech-oak forest remnants is not likely to persist, what could have many implications for future ecosystem functioning. Our results suggest that variation in gap size is an important factor contributing to composition of tree species composition of natural regeneration. The recent intermediate-scale disturbance pattern dominating the old-growth beech-oak forest is beneficial to canopy recruitment of species less shade-tolerant than Fagus sylvatica, as Acer pseudoplatanus (L.), Acer platanoides (L.), and Fraxinus excelsior (L.). We discuss possible factors behind observed shifts in tree species composition and limitations for application of gap dynamics to forest practice in managed beech-oak forest systems. Overall, results of this study may help to design silvicultural measures promoting mixed-species forests to deliver a range of desired ecosystem services.


1990 ◽  
Vol 20 (5) ◽  
pp. 649-658 ◽  
Author(s):  
Thomas A. Spies ◽  
Jerry F. Franklin ◽  
Mark Klopsch

Types and rates of mortality were measured and canopy gap formation rates were estimated from 5- to 15-year records of mortality in 34 permanent plots in mature (100- to 150-year-old) and old-growth (>200-year-old) Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco)/western hemlock (Tsugacanadensis (Raf.) Sarg.) forests in western Oregon and Washington. Gap surveys were conducted in a mature and an old-growth stand, and characteristics of 40 gaps and regeneration were measured. Most canopy trees died without disrupting the forest in both mature (87.6%) and old-growth stands (73.3%). The amount of forest area per year representing new gaps was 0.7% in mature stands and 0.2% in old-growth stands. The gap survey found a higher proportion of gaps in the mature stand than in the old-growth stand. Most regeneration (> 1 m tall) in gaps was western hemlock; Douglas-fir regeneration did not occur. The ratio of seedling density in gaps to density under canopies was about 3 for the mature stand and about 9 for the old-growth stand. Seedling density was correlated with measures of gap age but not gap size. The study suggests that gap disturbances and vegetative responses are important processes in the dynamics of these forests. However, gap formation rates and vegetative responses appear to be slow relative to other forest types. In addition to gap size, canopy structure and disturbance severity are important determinants of gap response.


2021 ◽  
Vol 13 (8) ◽  
pp. 1513
Author(s):  
Dominik Seidel ◽  
Peter Annighöfer ◽  
Christian Ammer ◽  
Martin Ehbrecht ◽  
Katharina Willim ◽  
...  

The structural complexity of the understory layer of forests or shrub layer vegetation in open shrublands affects many ecosystem functions and services provided by these ecosystems. We investigated how the basal area of the overstory layer, annual and seasonal precipitation, annual mean temperature, as well as light availability affect the structural complexity of the understory layer along a gradient from closed forests to open shrubland with only scattered trees. Using terrestrial laser scanning data and the understory complexity index (UCI), we measured the structural complexity of sites across a wide range of precipitation and temperature, also covering a gradient in light availability and basal area. We found significant relationships between the UCI and tree basal area as well as canopy openness. Structural equation models (SEMs) confirmed significant direct effects of seasonal precipitation on the UCI without mediation through basal area or canopy openness. However, annual precipitation and temperature effects on the UCI are mediated through canopy openness and basal area, respectively. Understory complexity is, despite clear dependencies on the available light and overall stand density, significantly and directly driven by climatic parameters, particularly the amount of precipitation during the driest month.


1996 ◽  
Vol 26 (10) ◽  
pp. 1875-1892 ◽  
Author(s):  
Sally E. Dahir ◽  
Craig G. Lorimer

Trends in gap dynamics among pole, mature, and old-growth northern hardwood stands were investigated on eight sites in the Porcupine Mountains of western upper Michigan. Recent gaps (created between 1981 and 1992) were identified using permanent plot records of tree mortality, while older gaps (1940–1981) were identified using stand reconstruction techniques. Although canopy gaps were somewhat more numerous in pole and mature stands, gaps were <25% as large as those in old-growth stands because of smaller gap-maker size, and the proportion of stand area turned over in gaps was only about half as large. Gap makers in younger stands generally had mean relative diameters (ratio of gap-maker DBH to mean DBH of canopy trees) <1.0 and were disproportionately from minor species such as eastern hophornbeam (Ostryavirginiana (Mill.) K. Koch). Gap makers in old-growth stands had mean relative diameters >1.5 and were predominantly from the dominant canopy species. Even in old-growth forests, most gaps were small (mean 44 m2) and created by single trees. Based on the identity of the tallest gap tree in each gap, nearly all shade-tolerant and midtolerant species have been successful in capturing gaps, but gap capture rates for some species were significantly different from their relative density in the upper canopy. The tallest gap trees of shade-tolerant species were often formerly overtopped trees, averaging more than 60% of the mean canopy height and having mean ages of 65–149 years. Canopy turnover times, based on gap formation rates over a 50-year period, were estimated to average 128 years for old-growth stands dominated by sugar maple (Acersaccharum Marsh.) and 192 years for old-growth stands dominated by hemlock (Tsugacanadensis (L.) Carrière). While these estimates of turnover time are substantially shorter than maximum tree ages observed on these sites, they agree closely with independent data on mean canopy residence time for trees that die at the average gap-maker size of 51 cm DBH. The data support previous hypothetical explanations of the apparent discrepancy between canopy turnover times of <130 years for hardwood species and the frequent occurrence of trees exceeding 250 years of age.


2017 ◽  
Vol 33 (2) ◽  
pp. 107-113 ◽  
Author(s):  
David P. Matlaga ◽  
Rachel K. Snyder ◽  
Carol C. Horvitz

Abstract:Many plants within the neotropical understorey produce both seeds and clonal offspring. Plant attributes (i.e. size) and variability in light can influence seed dispersal but it is not known if these factors influence the dispersal of clonal offspring. Our goal was to determine if canopy openness and plant size influence clonal-offspring dispersal of the herb Goeppertia marantifolia, which produces clonal bulbils on above-ground shoots. We monitored plants in permanent plots with varying levels of canopy openness in Corcovado National Park, Costa Rica. We recorded canopy openness, leaf area and the distance clonal offspring travelled from their parent plant (N = 283). Our path analysis model demonstrated that canopy openness had a strong positive effect on dispersal distance, while the association between clonal-offspring dispersal distance and parent plant leaf area was only weakly positive. On average, plants experiencing high canopy openness dispersed their clonal offspring further than plants under low canopy openness (124 cm vs. 79 cm, respectively). Contrary to studies on species that utilize rhizomes and stolons for clonal reproduction, we found that in this bulbil-producing species light availability is positively associated with clonal dispersal distance. Therefore, the influence of resource availability on spatial population dynamics of clonal species may be influenced by the species’ growth-form.


Sign in / Sign up

Export Citation Format

Share Document