scholarly journals Climate-Growth Relations of Abies georgei along an Altitudinal Gradient in Haba Snow Mountain, Southwestern China

Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1569
Author(s):  
Mei Sun ◽  
Jianing Li ◽  
Renjie Cao ◽  
Kun Tian ◽  
Weiguo Zhang ◽  
...  

Climate warming has been detected and tree growth is sensitive to climate change in Northwestern Yunnan Plateau. Abies georgei is the main component of subalpine forest in the area. In this study, A. georgei ring width chronologies were constructed at four sites ranging from 3300 to 4150 m a.s.l. in Haba Snow Mountain, Southeastern edge of Tibetan Plateau. We analyzed the relationship between four constructed chronologies and climatic variables (monthly minimum temperature, monthly mean temperature, monthly maximum temperature, monthly total precipitation, the Standardized Precipitation-Evapotranspiration Index, and monthly relative humidity) by using response function analysis, moving interval analysis, and redundancy analysis. Overall, the growth of A. georgei was positively affected by common climatic factors (winter moisture conditions, autumn temperature, and previous autumn precipitation). At low and middle-low sites, May moisture condition and previous December precipitation controlled its radial growth with positive correlations. At middle-high and high sites, previous November temperature was the key factor affecting tree growth. The result of moving interval analysis was consistent with correlation analyses, particularly for May moisture at low altitudes.

2020 ◽  
Vol 81 ◽  
pp. 1-14
Author(s):  
M Keyimu ◽  
Z Li ◽  
Y Zhao ◽  
Y Dong ◽  
B Fu ◽  
...  

Historical temperature reconstructions at high altitudes are still insufficient in southwestern China, which is considered one of the most sensitive areas to climate change in the world. Here we developed a tree ring-width chronology of Faxon fir Abies fargesii var. faxoniana at the upper timber line on Zhegu Mountain, Miyaluo Scenic Area, western Sichuan, China. The climate-tree growth relationship analysis indicated temperature as the dominant regulator on radial tree growth in this region. The reconstruction of aggregated maximum temperature (TMX) of autumn and winter for the period 1856-2016 was achieved with a linear regression model that accounted for 43.6% of the actual variability in the common time series (1954-2016). The reconstruction identified 4 warm periods and 3 cold periods. Similarities of warm and cold periods with previously published reconstructions from nearby sites indicated the reliability of our reconstruction. The significant positive correlation between TMX reconstruction and the Asian-Pacific Oscillation index and the Atlantic Multi-decadal Oscillation index suggested a linkage between large-scale climate circulations and the thermal variability at a multi-decadal scale on the western Sichuan Plateau. We also found that solar activity exerted a strong influence on decadal temperature variability in this region. The cold periods were matched well with historical large volcanic eruptions. Our results strengthen the historical climatic information in southwestern China and contribute to further understanding the regional thermal variability as well as its driving mechanism.


2021 ◽  
Vol 12 ◽  
Author(s):  
Domen Arnič ◽  
Jožica Gričar ◽  
Jernej Jevšenak ◽  
Gregor Božič ◽  
Georg von Arx ◽  
...  

European beech (Fagus sylvatica L.) adapts to local growing conditions to enhance its performance. In response to variations in climatic conditions, beech trees adjust leaf phenology, cambial phenology, and wood formation patterns, which result in different tree-ring widths (TRWs) and wood anatomy. Chronologies of tree ring width and vessel features [i.e., mean vessel area (MVA), vessel density (VD), and relative conductive area (RCTA)] were produced for the 1960–2016 period for three sites that differ in climatic regimes and spring leaf phenology (two early- and one late-flushing populations). These data were used to investigate long-term relationships between climatic conditions and anatomical features of four quarters of tree-rings at annual and intra-annual scales. In addition, we investigated how TRW and vessel features adjust in response to extreme weather events (i.e., summer drought). We found significant differences in TRW, VD, and RCTA among the selected sites. Precipitation and maximum temperature before and during the growing season were the most important climatic factors affecting TRW and vessel characteristics. We confirmed differences in climate-growth relationships between the selected sites, late flushing beech population at Idrija showing the least pronounced response to climate. MVA was the only vessel trait that showed no relationship with TRW or other vessel features. The relationship between MVA and climatic factors evaluated at intra-annual scale indicated that vessel area in the first quarter of tree-ring were mainly influenced by climatic conditions in the previous growing season, while vessel area in the second to fourth quarters of tree ring width was mainly influenced by maximum temperature and precipitation in the current growing season. When comparing wet and dry years, beech from all sites showed a similar response, with reduced TRW and changes in intra-annual variation in vessel area. Our findings suggest that changes in temperature and precipitation regimes as predicted by most climate change scenarios will affect tree-ring increments and wood structure in beech, yet the response between sites or populations may differ.


2021 ◽  
Author(s):  
Giovanna Battipaglia ◽  
Francesco Niccoli ◽  
Arturo Pacheco-Solana

<p>Climate-induced forest mortality is a critical issue in the Mediterranean basin, with major consequences for the functioning of these key ecosystems. Indeed, in Mediterranean ecosystems, where water stress is already the most limiting factor for tree performance, climatic changes are expected to entail an increase in water deficit. In this context, annual growth rings can provide short- (e.g., years) and long-term (e.g., decades) information on how trees respond to drought events. With climate change, <em>Pinus pinaster</em> and <em>Pinus pinea</em> L. are expected to reduce their distribution range in the region, being displaced at low altitudes by more drought tolerant taxa such as sub Mediterranean <em>Quercus</em> spp.</p><p>This study aims was to assess the physiological response of <em>Pinus</em> and <em>Quercus</em> species growing in the Vesuvio National park, located in Southern Italy and where an increase of temperature and drought events has been recorded in the recent years. Our preliminary results underlined the importance of temperature on the tree ring width of all the analyses species. The high temperatures can cause a change in the constant kinetics of the RuBisCo, leading to a consequent decrease in carboxylation rate and thus to a reduction in tree growth. On the other hand, also precipitation seemed to affect the growth of the sampled trees: indeed, in all the chronologies a reduction in growth was found after particular dry years: for example, the low rainfall in 1999 (455 mm/year) determined a drastic decline in growth in 2000 in all the species. In addition to the climatic factors, competition can also play an important role in the growth rate: dendrochronological analyzes have highlighted how stand specific properties (i.e. density, structure and composition) can influence individual tree responses to drought events. The knowledge of those researches should be integrated into sustainable forest management strategies to minimize the potential impacts of climate change on forest ecosystems.</p>


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 473 ◽  
Author(s):  
Zhang ◽  
Zhang ◽  
Jiang ◽  
Bagila ◽  
Ainur ◽  
...  

The divergence problem, which manifests as an unstable response relationship between tree-ring growth and climatic factors under the background of global warming, poses a challenge to both the traditional theory of dendroclimatology and the reliability of climatic reconstructions based on tree-ring data. Although Schrenk spruce, as the dominant tree species in the Tianshan Mountains, is frequently applied in the dendrochronological studies, the understanding of the divergence problem of this tree species is still limited. This study conducted correlation analysis between climatic factors and tree-ring width chronologies from 51 living and healthy specimens of Schrenk spruce at sites of high and low elevation in the Alatau Mountains to determine the stability of the response. The results revealed that the tree-ring width of the spruce specimens was correlated positively with precipitation and correlated negatively with temperature. Although the variations of the two tree-ring chronologies were similar, the radial growth of the spruce at the low elevation was found more sensitive to climatic factors. Furthermore, the sensitivity of tree growth to climate demonstrated an obvious increase after an abrupt change of climate under the background of the recent warming and wetting trend. Increased drought stress, calculated based on climatic data, was regarded as the main reason for this phenomenon. The results supply the gap of the stability of climatic response of tree growth in Central Asia to some extent.


2021 ◽  
Author(s):  
Marina Fonti ◽  
Olga Churakova (Sidorova) ◽  
Ivan Tychkov

<p>Air temperature increase and change in precipitation regime have a significant impact on northern forests leading to the ambiguous consequences due to the complex interaction between the ecosystem plant components and permafrost. One of the major interests in such circumstances is to understand how tree growth of the main forest species of the Siberian North will change under altering climatic conditions. In this work, we applied the process-based Vaganov-Shashkin model (VS - model) of tree growth in order to estimate the daily impact of climatic conditions on tree-ring width of larch trees in northeastern Yakutia (Larix cajanderi Mayr.) and eastern Taimyr (Larix gmelinii Rupr. (Rupr.) for the period 1956-2003, and to determine the extent to which the interaction of climatic factors (temperature and precipitation) is reflected in the tree-ring anatomical structure. Despite the location of the study sites in the harsh conditions of the north, and temperature as the main limiting factor, it was possible to identify a period during the growing season when tree growth was limited by lack of soil moisture. The application of the VS-model for the studied regions allowed establishing in which period of the growing season the water stress is most often manifest itself, and how phenological phases (beginning, cessation, and duration of larch growth) vary among the years.</p><p>The research was funded by RFBR, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science, project number 20-44-240001 and by the Russian Ministry of Science and Higher Education (projects FSRZ-2020-0010).</p>


Forests ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 736 ◽  
Author(s):  
J. Julio Camarero ◽  
Raúl Sánchez-Salguero ◽  
Montserrat Ribas ◽  
Ramzi Touchan ◽  
Laia Andreu-Hayles ◽  
...  

There is a lack of knowledge on how tree species respond to climatic constraints like water shortages and related atmospheric patterns across broad spatial and temporal scales. These assessments are needed to project which populations will better tolerate or respond to global warming across the tree species distribution range. Warmer and drier conditions have been forecasted for the Mediterranean Basin, where Aleppo pine (Pinus halepensis Mill.) is the most widely distributed conifer in dry sites. This species shows plastic growth responses to climate, being particularly sensitive to drought. We evaluated how 32 Aleppo pine forests responded to climate during the second half of the 20th century by using dendrochronology. Climatic constraints of radial growth were inferred by fitting the Vaganov–Shashkin (VS-Lite) growth model to ring-width data from our Aleppo pine forest network. Our findings reported that Aleppo pine growth decreased and showed the highest common coherence among trees in dry, continental sites located in southeastern and eastern inland Spain and Algeria. In contrast, growth increased in wetter sites located in northeastern Spain. Overall, across the Aleppo pine network tree growth was enhanced by prior wet winters and cool and wet springs, whilst warm summers were associated with less growth. The relationships between site ring-width chronologies were higher in nearby forests. This explains why Aleppo pine growth was distinctly linked to indices of atmospheric circulation patterns depending on the geographical location of the forests. The western forests were more influenced by moisture and temperature conditions driven by the Western Mediterranean Oscillation (WeMO) and the Northern Atlantic Oscillation (NAO), the southern forests by the East Atlantic (EA) and the august NAO, while the Balearic, Tunisian and northeastern sites by the Arctic Oscillation (AO) and the Scandinavian pattern (SCA). The climatic constraints for Aleppo pine tree growth and its biogeographical variability were well captured by the VS-Lite model. The model performed better in dry and continental sites, showing strong growth coherence between trees and climatic limitations of growth. Further research using similar broad-scale approaches to climate–growth relationships in drought-prone regions deserves more attention.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1215
Author(s):  
Yuting Fan ◽  
Huaming Shang ◽  
Shulong Yu ◽  
Ye Wu ◽  
Qian Li

The juniper tree forest is a critical component of the carbon, water, and energy cycles of Tajikistan. However, to date, long-term information about tree-ring isotopes is limited in this region. Here, we developed tree-ring width (TRW) and tree-ring 13C chronologies for juniper trees (Juniperus seravschanica (Juniperus excelsa subsp.polycarpos (K. Koch) Takht.) and Juniperus turkestanica (Juniperus pseudosabina Fisch. & C. A. Mey)) and investigated their dendroclimatic signals in the northwest of the Pamir-Alay (NWPA) mountains in Tajikistan. Tree-ring ∆13C and TRW of juniper presented different sensitivities to monthly precipitation. Moreover, ∆13C in juniper showed consistently significant relationships with climatic factors in larger seasonal windows than TRW did. Dendroclimatological analysis demonstrates that precipitation has significant effects on tree growth and isotope enrichment. Late summer to early winter temperature is one limiting factor for the TRW chronologies, but previous spring, summer, and autumn temperature and precipitation from the previous July to the current May were the dominant climatic factors accounting for inter-annual variations in the ∆13C chronologies. This verified that the multi tree-ring parameters of juniper in Tajikistan are a promising tool for investigating inter-annual climate variations. Furthermore, the stable carbon isotopes of tree rings have proven to be powerful evidence of climatic signals. The moisture-sensitive tree-ring isotope provides opportunities for complex investigations of changes in atmospheric circulation patterns and timing of seasonal rainfall. Our results highlight the need for more detailed studies of tree growth responses to changing climate and tree-ring isotopes to understand source water variations (especially baseflow) of the juniper tree forest.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 878
Author(s):  
Chang-Hyun Park ◽  
Ui-Cheon Lee ◽  
Soo-Chul Kim ◽  
Kwang-Hee Lee

To analyze the relationship between climatic factors (monthly mean temperature and total precipitation) and tree-ring growths of Pinus densiflora from the central region of the Republic of Korea, more than 20 trees were sampled from three national parks. The tree-ring chronology of Mt. Bukhan covering the period of 1917–2016 was assessed, as well as that of Mt. Seorak across 1687–2017 and Mt. Worak across 1777–2017. After cross-dating, each ring-width series was double-standardized by first fitting a logarithmic curve and then a 50 year cubic spline. Climate-growth relationships were computed with bootstrap correlation functions. The result of the analysis showed a positive response from the current March temperature and May precipitations for tree-ring growth of Pinus densiflora. It indicates that a higher temperature supply during early spring season and precipitation during cambium activity are important for radial growths of Pinus densiflora from the central region in the Republic of Korea.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Peixin Ren ◽  
Zelin Liu ◽  
Xiaolu Zhou ◽  
Changhui Peng ◽  
Jingfeng Xiao ◽  
...  

Abstract Background Vegetation phenology research has largely focused on temperate deciduous forests, thus limiting our understanding of the response of evergreen vegetation to climate change in tropical and subtropical regions. Results Using satellite solar-induced chlorophyll fluorescence (SIF) and MODIS enhanced vegetation index (EVI) data, we applied two methods to evaluate temporal and spatial patterns of the end of the growing season (EGS) in subtropical vegetation in China, and analyze the dependence of EGS on preseason maximum and minimum temperatures as well as cumulative precipitation. Our results indicated that the averaged EGS derived from the SIF and EVI based on the two methods (dynamic threshold method and derivative method) was later than that derived from gross primary productivity (GPP) based on the eddy covariance technique, and the time-lag for EGSsif and EGSevi was approximately 2 weeks and 4 weeks, respectively. We found that EGS was positively correlated with preseason minimum temperature and cumulative precipitation (accounting for more than 73% and 62% of the study areas, respectively), but negatively correlated with preseason maximum temperature (accounting for more than 59% of the study areas). In addition, EGS was more sensitive to the changes in the preseason minimum temperature than to other climatic factors, and an increase in the preseason minimum temperature significantly delayed the EGS in evergreen forests, shrub and grassland. Conclusions Our results indicated that the SIF outperformed traditional vegetation indices in capturing the autumn photosynthetic phenology of evergreen forest in the subtropical region of China. We found that minimum temperature plays a significant role in determining autumn photosynthetic phenology in the study region. These findings contribute to improving our understanding of the response of the EGS to climate change in subtropical vegetation of China, and provide a new perspective for accurately evaluating the role played by evergreen vegetation in the regional carbon budget.


2017 ◽  
Vol 41 (4) ◽  
pp. 478-495 ◽  
Author(s):  
UK Thapa ◽  
S St. George ◽  
DK Kharal ◽  
NP Gaire

The climate of Nepal has changed rapidly over the recent decades, but most instrumental records of weather and hydrology only extend back to the 1980s. Tree rings can provide a longer perspective on recent environmental changes, and since the early 2000s, a new round of field initiatives by international researchers and Nepali scientists have more than doubled the size of the country’s tree-ring network. In this paper, we present a comprehensive analysis of the current tree-ring width network for Nepal, and use this network to estimate changes in forest growth nation-wide during the last four centuries. Ring-width chronologies in Nepal have been developed from 11 tree species, and half of the records span at least 290 years. The Nepal tree-ring width network provides a robust estimate of annual forest growth over roughly the last four centuries, but prior to this point, our mean ring-width composite fluctuates wildly due to low sample replication. Over the last four centuries, two major events are prominent in the all-Nepal composite: (i) a prolonged and widespread growth suppression during the early 1800s; and (ii) heightened growth during the most recent decade. The early 19th century decline in tree growth coincides with two major Indonesian eruptions, and suggests that short-term disturbances related to climate extremes can exert a lasting influence on the vigor of Nepal’s forests. Growth increases since AD 2000 are mainly apparent in high-elevation fir, which may be a consequence of the observed trend towards warmer temperatures, particularly during winter. This synthesis effort should be useful to establish baselines for tree-ring data in Nepal and provide a broader context to evaluate the sensitivity or behavior of this proxy in the central Himalayas.


Sign in / Sign up

Export Citation Format

Share Document