scholarly journals The Second-Generation Biomethane from Mandarin Orange Peel under Cocultivation with Methanogens and the Armed Clostridium cellulovorans

Fermentation ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. 95 ◽  
Author(s):  
Hisao Tomita ◽  
Yutaka Tamaru

This study demonstrates that the consortium, which consists of the microbial flora of methane production (MFMP) and Clostridium cellulovorans grown with cellulose, can perform the direct conversion of cellulosic biomass to methane. The MFMP was taken from a commercial methane fermentation tank and was extremely complicated. Therefore, C. cellulovorans grown with cellobiose could not perform high degradation ability on cellulosic biomass due to competition by various microorganisms in MFMP. Focusing on the fact that C. cellulovorans was cultivated with cellulose, which is armed with cellulosome, so that it is now armed C. cellulovorans; the direct conversion was carried out by the consortium which consisted of MFMP and the armed C. cellulovorans. As a result, the consortium of C. cellulovorans grown with cellobiose and MFMP (CCeM) could not degrade the purified cellulose and mandarin orange peel. However, MFMP and the armed C. cellulovorans reduced 78.4% of the total sugar of the purified cellulose such as MN301, and produced 6.89 mL of methane simultaneously. Furthermore, the consortium consisted of MFMP and the armed C. cellulovorans degraded mandarin orange peel without any pretreatments and produced methane that was accounting for 66.2% of the total produced gas.

2012 ◽  
Vol 550-553 ◽  
pp. 3180-3183 ◽  
Author(s):  
Guo Chen Zheng ◽  
Jian Zheng Li ◽  
Wei Li ◽  
Zhu Jun Tian ◽  
Shuang Shi Dong ◽  
...  

Anaerobic fermentative technology is an important route to solving environmental pollution and resources problems. Combined hydrogen and methane production in a two-stage process is a concept which has been developed in recent years Anaerobic biological treatment organic wastewater can produce large amounts of hydrogen and methane,which can be used as energy carrier. At present,the research focusing on the adjustment of fermentation hydrogen-methane production has been conducted. Furthermore, the simultaneous hydrogen-methane production was tested and optimized. However, it lacked combined hydrogen-methane production in an anaerobic reactor in literature so far. Based on preview experiment, the paper studied the simultaneous hydrogen-methane fermentation in an anaerobic baffled reactor (ABR) system. ABR has the advantage of biomass phase separation and integration of acidogenic and methanogenic processes to simultaneously conduct hydrogen-methane production during wastewater treatment. Through deep biohydrogen production, it can enhance the activity of hydrogen-producing acetogens (HPA) and the efficiencies of the combined hydrogen-methane fermentation system. It showed to enhance the activity of HPA was the key to the combined hydrogen-methane production.


2006 ◽  
Vol 54 (9) ◽  
pp. 221-227 ◽  
Author(s):  
Y. Yoneyama ◽  
A. Nishii ◽  
M. Nishimoto ◽  
N. Yamada ◽  
T. Suzuki

Upflow anaerobic sludge blanket (UASB) methane fermentation treatment of cow manure that was subjected to screw pressing, thermal treatment and subsequent solid–liquid separation was studied. Conducting batch scale tests at temperatures between 140 and 180 °C, the optimal temperature for sludge settling and the color suppression was found to be between160–170 °C. UASB treatment was carried out with a supernatant obtained from the thermal treatment at the optimal conditions (170 °C for 30 minutes) and polymer-dosed solid–liquid separation. In the UASB treatment with a CODCr loading of 11.7 kg/m3/d and water temperature of 32.2 °C, the CODCr level dropped from 16,360 mg/L in raw water to 3,940 mg/L in treated water (CODCr removal rate of 75.9%), and the methane production rate per CODCr was 0.187 Nm3/kg. Using wastewater thermal-treated at the optimal conditions, also a methane fermentation treatment with a continuously stirred tank reactor (CSTR) was conducted (CODCr in raw water: 38,000 mg/L, hydraulic retention time (HRT): 20 days, 35 °C). At the CODCr loading of 1.9 kg/m3/d, the methane production rate per CODCr was 0.153 Nm3/kg. This result shows that UASB treatment using thermal pre-treatment provides a CODCr loading of four times or more and a methane production rate of 1.3 times higher than the CSTR treatment.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 526 ◽  
Author(s):  
Marcin Zieliński ◽  
Paulina Rusanowska ◽  
Aleksandra Krzywik ◽  
Magda Dudek ◽  
Anna Nowicka ◽  
...  

Hydrodynamic cavitation was recently applied as a biomass pretreatment method. Most of the studies which used hydrodynamic cavitation were applied to pretreated sugarcane bagasse or reed. High biomass yield of Sida hermaphrodita points out the necessity of studies on its effective pretreatment before methane fermentation, especially because its “wood-like” characteristics could present different disintegration properties than other lignocellulose biomass. Thus, the aim of the study was to investigate the influence of duration of hydrodynamic cavitation on lignocellulose composition in Sida hermaphrodita silage, and the assessment of disintegrated biomass as a substrate for methane fermentation. The study showed a slight decrease in lignin, cellulose, and hemicellulose content in biomass after hydrodynamic cavitation, which resulted in a higher content of carbohydrates in the liquid fraction of disintegrated substrates. Methane production was 439.1 ± 45.0 L CH4/kg total solids (TS) from the substrate disintegrated for 20 min. However, the most effective time for methane production was hydrodynamic cavitation of the substrate for 5 min. At this pretreatment duration, the highest values for chemical oxygen demand (COD), total organic carbon (TOC), and carbohydrate reduction were also noted. The study proved that hydrodynamic cavitation applied for 5 min allowed obtaining an energy profit of 0.17 Wh/g TS. The studies on a laboratory scale indicated that the technology of hydrodynamic cavitation of Sida hermaphrodita could be economically applied for methane fermentation on a large scale.


Author(s):  
Meng Zhang ◽  
Xiaoxu Song ◽  
Pengfei Zhang ◽  
Z. J. Pei

Biofuels derived from cellulosic biomass offer a promising alternative to petroleum-based liquid transportation fuels. Cellulosic biomass can be converted into biofuels through biochemical pathway. This pathway consists of two major conversions: sugar conversion and ethanol conversion. Sugar yield in sugar conversion is critical to the cost effectiveness of biofuel manufacturing, because it is approximately proportional to the ethanol biofuel yield. Cellulosic biomass sugar conversion consists of pretreatment and enzymatic hydrolysis. Biomass particle size is an important factor affecting sugar yield. The literature contains many studies investigating the relationship between particle size and sugar yield. Many studies focused only on the sugar yield in enzymatic hydrolysis, and failed to take into account the biomass weight loss during pretreatment. This weight loss results in a loss of the amount of potential sugar (cellulose), which continues going into enzymatic hydrolysis. Without considering this loss, cellulosic biomass with a higher enzymatic hydrolysis sugar yield may end up with a lower total sugar yield through sugar conversion. The present study aims to address this issue by investigating the effects of biomass particle size using total sugar yield, a parameter considering both the biomass weight loss in pretreatment and the sugar yield in enzymatic hydrolysis.


2020 ◽  
Vol 18 (1) ◽  
pp. 31-38
Author(s):  
Yu-mei Sun ◽  
Xiang Han ◽  
Dong-xiang Zhang ◽  
Qiao-yan Sun ◽  
Xiang-guang Chen ◽  
...  

AbstractIn order to solve the problem that the total sugar content of the chlortetracycline fermentation tank can not be automatically detected online, a prediction method which combines the output recursive wavelet neural network and the Gauss process regression is proposed in this paper. A soft sensor model between the measurable parameters (inputs) and the total sugar content (output) of the chlortetracycline fermentation tank was established. The soft sensor model was trained by self updating algorithm. Based on field data, the accuracy and generalization ability of the soft sensor model were analyzed. It is shown that the prediction accuracy of the combined model proposed in this paper is better than that of other single models. The results demonstrate the superiority of the method, and MRE and RMSE are used to evaluate the performance of the soft sensor model. It shows that the prediction precision of the soft sensor model based on ORWNN-GPR combination is relatively high in the long period of fermentation, and is suitable for on-line prediction of the total sugar content of the chlortetracycline fermentation tank. The soft sensor method can effectively reduce the labor intensity of the analysts and saves the production cost for enterprise.


2020 ◽  
Vol 8 (3) ◽  
Author(s):  
Susy Tjahjani ◽  
Hanan Aulalia ◽  
Genevieve Annishaningrat Zailani

Diseases including Japanese B encephalitis and filariasis can be transmitted to humans by Culex sp. Many methods could be applied to prevent their bites from reducing their population or preventing them from their bites. N, N-diethyl-meta-toluamide (DEET) has been widely used as an effective synthetic repellent, but DEET needs to be applied carefully, especially for children. Other repellents based on natural origin, i.e., Lavandula angustifolia D.C. (lavender) flower and Citrus reticulate L. (mandarin orange) peel essential oil and their combination with soybean oil, were studied in Parasitology Laboratory, Faculty of Medicine, Universitas Kristen Maranatha, Bandung on July–August 2018, for their repellent duration against female Culex sp. to find out the optimal formula. It is a simple randomized design with four replications and seven treatments, i.e., negative control, DEET, pure essential oil, pure soybean oil, three kinds of combination of essential oil and soybean oil in various ratios. The study was carried out using the arm in the cage method against four human arms, following Fradin and Day. The data were analyzed using ANOVA, continued with Tukey HSD with α=0.05. The result shows that DEET has the longest duration (p=0.000), the combination of each essential oil with soybean oil in 1:2 ratio had longer duration than the pure essential oil (p=0.000), soybean oil (p=0.000), and other combination ratios (p=0.000). It was concluded that a mixture of L. angustifolia D.C. flower/C. reticulata L. peel essential oil with soybean oil in a certain ratio was the ideal preparation to repel Culex sp. CAMPURAN MINYAK ATSIRI BUNGA LAVENDER/KULIT JERUK MANDARIN-MINYAK KEDELAI UNTUK MENOLAK CULEX SP.Beberapa penyakit termasuk Japanese B encephalitis dan filariasis dapat ditransmisikan ke manusia melalui gigitan nyamuk Culex sp. Banyak cara dapat dilakukan untuk mencegah gigitan nyamuk ini, baik dengan mengurangi populasinya atau mencegah gigitannya. N, N-diethyl-meta-toluamide (DEET) telah digunakan secara luas sebagai repellent sintetik yang efektif, tetapi pemakaian DEET harus dilakukan dengan hati-hati khususnya pada anak. Repellent lain yang berasal dari alam, yaitu minyak esensial bunga Lavandula angustifolia D.C. (lavender) dan kulit buah Citrus reticulate L., serta campurannya dengan minyak kedelai telah diuji durasi proteksi terhadap Culex sp. betina sehingga diperoleh formula repellent yang optimal. Penelitian dilaksanakan di Laboratorium Parasitologi, Fakultas Kedokteran, Universitas Kristen Maranatha, Bandung pada Juli–Agustus 2018 dan menggunakan desain simple randomized dengan empat replikasi dan tujuh perlakuan, yaitu kontrol negatif, DEET, minyak esensial murni, minyak kedelai murni, dan tiga macam rasio campuran minyak esensial dengan minyak kedelai. Pengujian menggunakan metode lengan dalam kandang menurut Fradin dan Day dengan empat lengan sebagai empat replikasi. Analisis data menggunakan ANOVA, dilanjutkan Tukey HSD dengan α=0,05. Hasil penelitian menunjukkan bahwa DEET memiliki durasi proteksi paling lama (p=0,000), durasi proteksi kombinasi minyak esensial dengan minyak kedelai rasio 1:2 lebih panjang dibanding dengan minyak esensial murni (p=0.000), minyak kedelai (p=0.000), dan rasio kombinasi lainnya (p=0.000). Simpulan, rasio tertentu campuran minyak esensial bunga L. angustifolia D.C./kulit buah C. reticulata L. dengan minyak kedelai merupakan sediaan ideal untuk menolak Culex sp.


Sign in / Sign up

Export Citation Format

Share Document