scholarly journals Influence of Salinity on the Microbial Community Composition and Metabolite Profile in Kimchi

Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 308
Author(s):  
Mi-Ai Lee ◽  
Yun-Jeong Choi ◽  
Hyojung Lee ◽  
Sojeong Hwang ◽  
Hye Jin Lee ◽  
...  

Kimchi, a popular traditional Korean fermented food, is produced by fermenting vegetables with various spices and salt. Salt plays an important role in the preparation of kimchi and affects its taste and flavor. This study aimed to investigate the effects of salinity on kimchi fermentation. The salinities of five sets of kimchi samples were adjusted to 1.4%, 1.7%, 2.0%, 2.2%, and 2.5%. The characteristics of each kimchi sample, including its pH, acidity, free sugar content, free amino acid content, organic acid content, and microbial community composition, were evaluated during kimchi fermentation. The low-salinity kimchi sample showed a rapid decline in the pH at the beginning of the fermentation process, a relatively high abundance of Leuconostoc mesenteroides, and high mannitol production. In the late fermentation period, Latilactobacillus sakei had a higher abundance in the kimchi sample with high salinity than in other samples. In the initial stage of fermentation, the metabolite composition did not differ based on salinity, whereas the composition was considerably altered from the third week of fermentation. The findings showed variations in the characteristics and standardized manufacturing processes of kimchi at various salt concentrations. Therefore, salinity significantly affected the types and concentrations of fermentation metabolites in kimchi.

2021 ◽  
Vol 12 ◽  
Author(s):  
Omar Cristobal-Carballo ◽  
Susan A. McCoard ◽  
Adrian L. Cookson ◽  
Siva Ganesh ◽  
Katherine Lowe ◽  
...  

The present study aimed to determine whether dietary supplementation with methanogen inhibitors during early life may lead to an imprint on the rumen microbial community and change the rumen function and performance of calves to 49-weeks of rearing. Twenty-four 4-day-old Friesian x Jersey cross calves were randomly assigned into a control and a treatment group. Treated calves were fed a combination of chloroform (CF) and 9,10-anthraquinone (AQ) in the solid diets during the first 12 weeks of rearing. Afterward, calves were grouped by treatments until week 14, and then managed as a single group on pasture. Solid diets and water were offered ad libitum. Methane measurements, and sample collections for rumen metabolite and microbial community composition were carried out at the end of weeks 2, 4, 6, 8, 10, 14, 24 and 49. Animal growth and dry matter intake (DMI) were regularly monitored over the duration of the experiment. Methane emissions decreased up to 90% whilst hydrogen emissions increased in treated compared to control calves, but only for up to 2 weeks after treatment cessation. The near complete methane inhibition did not affect calves’ DMI and growth. The acetate:propionate ratio decreased in treated compared to control calves during the first 14 weeks but was similar at weeks 24 and 49. The proportions of Methanobrevibacter and Methanosphaera decreased in treated compared to control calves during the first 14 weeks; however, at week 24 and 49 the archaea community was similar between groups. Bacterial proportions at the phylum level and the abundant bacterial genera were similar between treatment groups. In summary, methane inhibition increased hydrogen emissions, altered the methanogen community and changed the rumen metabolite profile without major effects on the bacterial community composition. This indicated that the main response of the bacterial community was not a change in composition but rather a change in metabolic pathways. Furthermore, once methane inhibition ceased the methanogen community, rumen metabolites and hydrogen emissions became similar between treatment groups, indicating that perhaps using the treatments tested in this study, it is not possible to imprint a low methane microbiota into the rumen in the solid feed of pre-weaned calves.


Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 86
Author(s):  
So-Ra Yoon ◽  
Yun-Mi Dang ◽  
Su-Yeon Kim ◽  
Su-Yeon You ◽  
Mina K. Kim ◽  
...  

Capsaicinoid content, among other factors, affects the perception of spiciness of commercial kimchi. Here, we investigated whether the physicochemical properties of kimchi affect the spicy taste of capsaicinoids perceived by the tasting. High-performance liquid chromatography (HPLC) was used to evaluate the capsaicinoid content (mg/kg) of thirteen types of commercial kimchi. The physicochemical properties such as pH, titratable acidity, salinity, free sugar content, and free amino acid content were evaluated, and the spicy strength grade was determined by selected panel to analyze the correlation between these properties. Panels were trained for 48 h prior to actual evaluation by panel leaders trained for over 1000 h according to the SpectrumTM method. Partial correlation analysis was performed to examine other candidate parameters that interfere with the sensory evaluation of spiciness and capsaicinoid content. To express the specific variance after eliminating the effects of other variables, partial correlations were used to estimate the relationships between two variables. We observed a strong correlation between spiciness intensity ratings and capsaicinoid content, with a Pearson’s correlation coefficient of 0.78 at p ≤ 0.001. However, other specific variables may have influenced the relationship between spiciness intensity and total capsaicinoid content. Partial correlation analysis indicated that the free sugar content most strongly affected the relationship between spiciness intensity and capsaicinoid content, showing the largest first-order partial correlation coefficient (rxy/z: 0.091, p ≤ 0.01).


LWT ◽  
2021 ◽  
pp. 111694
Author(s):  
Xiaoxi Chen ◽  
Qin Chen ◽  
Yaxin Liu ◽  
Bin Liu ◽  
Xubo Zhao ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Raiza Hasrat ◽  
Jolanda Kool ◽  
Wouter A. A. de Steenhuijsen Piters ◽  
Mei Ling J. N. Chu ◽  
Sjoerd Kuiling ◽  
...  

AbstractThe low biomass of respiratory samples makes it difficult to accurately characterise the microbial community composition. PCR conditions and contaminating microbial DNA can alter the biological profile. The objective of this study was to benchmark the currently available laboratory protocols to accurately analyse the microbial community of low biomass samples. To study the effect of PCR conditions on the microbial community profile, we amplified the 16S rRNA gene of respiratory samples using various bacterial loads and different number of PCR cycles. Libraries were purified by gel electrophoresis or AMPure XP and sequenced by V2 or V3 MiSeq reagent kits by Illumina sequencing. The positive control was diluted in different solvents. PCR conditions had no significant influence on the microbial community profile of low biomass samples. Purification methods and MiSeq reagent kits provided nearly similar microbiota profiles (paired Bray–Curtis dissimilarity median: 0.03 and 0.05, respectively). While profiles of positive controls were significantly influenced by the type of dilution solvent, the theoretical profile of the Zymo mock was most accurately analysed when the Zymo mock was diluted in elution buffer (difference compared to the theoretical Zymo mock: 21.6% for elution buffer, 29.2% for Milli-Q, and 79.6% for DNA/RNA shield). Microbiota profiles of DNA blanks formed a distinct cluster compared to low biomass samples, demonstrating that low biomass samples can accurately be distinguished from DNA blanks. In summary, to accurately characterise the microbial community composition we recommend 1. amplification of the obtained microbial DNA with 30 PCR cycles, 2. purifying amplicon pools by two consecutive AMPure XP steps and 3. sequence the pooled amplicons by V3 MiSeq reagent kit. The benchmarked standardized laboratory workflow presented here ensures comparability of results within and between low biomass microbiome studies.


Author(s):  
Tamara J. H. M. van Bergen ◽  
Ana B. Rios-Miguel ◽  
Tom M. Nolte ◽  
Ad M. J. Ragas ◽  
Rosalie van Zelm ◽  
...  

Abstract Pharmaceuticals find their way to the aquatic environment via wastewater treatment plants (WWTPs). Biotransformation plays an important role in mitigating environmental risks; however, a mechanistic understanding of involved processes is limited. The aim of this study was to evaluate potential relationships between first-order biotransformation rate constants (kb) of nine pharmaceuticals and initial concentration of the selected compounds, and sampling season of the used activated sludge inocula. Four-day bottle experiments were performed with activated sludge from WWTP Groesbeek (The Netherlands) of two different seasons, summer and winter, spiked with two environmentally relevant concentrations (3 and 30 nM) of pharmaceuticals. Concentrations of the compounds were measured by LC–MS/MS, microbial community composition was assessed by 16S rRNA gene amplicon sequencing, and kb values were calculated. The biodegradable pharmaceuticals were acetaminophen, metformin, metoprolol, terbutaline, and phenazone (ranked from high to low biotransformation rates). Carbamazepine, diatrizoic acid, diclofenac, and fluoxetine were not converted. Summer and winter inocula did not show significant differences in microbial community composition, but resulted in a slightly different kb for some pharmaceuticals. Likely microbial activity was responsible instead of community composition. In the same inoculum, different kb values were measured, depending on initial concentration. In general, biodegradable compounds had a higher kb when the initial concentration was higher. This demonstrates that Michealis-Menten kinetic theory has shortcomings for some pharmaceuticals at low, environmentally relevant concentrations and that the pharmaceutical concentration should be taken into account when measuring the kb in order to reliably predict the fate of pharmaceuticals in the WWTP. Key points • Biotransformation and sorption of pharmaceuticals were assessed in activated sludge. • Higher initial concentrations resulted in higher biotransformation rate constants for biodegradable pharmaceuticals. • Summer and winter inocula produced slightly different biotransformation rate constants although microbial community composition did not significantly change. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document