scholarly journals Impact Resistance of Functionally Layered Two-Stage Fibrous Concrete

Fibers ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 88
Author(s):  
Gunasekaran Murali ◽  
Nandhu Prasad ◽  
Sergey Klyuev ◽  
Roman Fediuk ◽  
Sallal R. Abid ◽  
...  

The impact resistance of functionally layered two-stage fibrous concrete (FLTSFC) prepared using the cement grout injection technique was examined in this study. The impact resistance of turtle shells served as the inspiration for the development of FLTSFC. Steel and polypropylene fibres are used in more significant quantities than usual in the outer layers of FLTSFC, resulting in significantly improved impact resistance. An experiment was carried out simultaneously to assess the efficacy of one-layered and two-layered concrete to assess the effectiveness of three-layered FLTSFC. When performing the drop-mass test ACI 544, a modified version of the impact test was suggested to reduce the scattered results. Instead of a solid cylindrical specimen with no notch, a line-notched specimen was used instead. This improvement allows for the pre-definition of a fracture route and the reduction of the scattering of results. The testing criteria used in the experiments were impact numbers associated to first crack and failure, mode of failure, and ductility index. The coefficient of variation of the ACI impact test was lowered due to the proposed change, indicating that the scattering of results was substantially reduced. This research contributes to the idea of developing enhanced, more impact-resistant fibre composites for use in possible protective structures in the future.

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5833
Author(s):  
Nandhu Prasad ◽  
Gunasekaran Murali ◽  
Nikolai Vatin

This research examined the performance of functionally graded two-stage fibrous concrete (FTSFC) against modified repeated falling-mass impacts. This study led to the concept of creating improved multiphysics model of fibre composites with better impact resistance for potential protective constructions. FTSFC was developed based on the bio-inspiring strength of turtle shells. The excellent impact resistance of FTSFC was accomplished by including a larger quantity of steel and polypropylene fibres in the outer layers. At the same time, one- and two-layered concrete were cast and compared to evaluate the efficiency of three-layered FTSFC. To minimize the dispersed test results, a modified form of the 544 drop-mass impact test was recommended by the American Concrete Institute (ACI). The modification was a knife-edge notched specimen instead of a solid cylindrical specimen without a notch. This modification predefined a crack path and reduced the dispersion of results. Cracking and failure impact numbers, ductility index, and failure mode were the testing criteria. The suggested modification to the ACI impact test decreased the coefficient of variance, showing that the dispersion of test results was reduced significantly. This study led to the concept of creating improved, fibre composites with better impact resistance for potential protective constructions.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Hiroyuki Yamada ◽  
Kohei Tateyama ◽  
Shino Naruke ◽  
Hisashi Sasaki ◽  
Shinichi Torigata ◽  
...  

AbstractThe destruction caused by ballistic ejecta from the phreatic eruptions of Mt. Ontake in 2014 and Mt. Kusatsu-Shirane (Mt. Moto-Shirane) in 2018 in Japan, which resulted in numerous casualties, highlighted the need for better evacuation facilities. In response, some mountain huts were reinforced with aramid fabric to convert them into shelters. However, a number of decisions must be made when working to increase the number of shelters, which depend on the location where they are to be built. In this study, we propose a method of using high-strength steel to reinforce wooden buildings for use as shelters. More specifically, assuming that ballistic ejecta has an impact energy of 9 kJ or more, as in previous studies, we developed a method that utilizes SUS304 and SS400 unprocessed steel plates based on existing impact test data. We found that SUS304 is particularly suitable for use as a reinforcing material because it has excellent impact energy absorption characteristics due to its high ductility as well as excellent corrosion resistance. With the aim of increasing the structural strength of steel shelters, we also conducted an impact test on a shelter fabricated from SS400 deck plates (i.e., steel with improved flexural strength provided by work-hardened trapezoidal corrugated plates). The results show that the shelter could withstand impact with an energy of 13.5 kJ (2.66 kg of simulated ballistic ejecta at 101 m/s on impact). In addition, from the result of the impact test using the roof-simulating structure, it was confirmed the impact absorption energy is further increased when artificial pumice as an additional protective layer is installed on this structure. Observations of the shelter after the impact test show that there is still some allowance for deformation caused by projectile impact, which means that the proposed steel shelter holds promise, not only structurally, but also from the aspects of transportation and assembly. Hence, the usefulness of shelters that use steel was shown experimentally. However, shelter construction should be suitable for the target environment.


Author(s):  
Kenro Obuchi ◽  
Fumiaki Watanabe ◽  
Hiroshi Kuroki ◽  
Hiroyuki Yagi ◽  
Kazuyoshi Arai

Ceramic matrix composites (CMCs) have lower density and a higher service temperature limit than nickel based alloys which have been used for turbine components of aircraft engines. These properties of CMCs have the potential to reduce the weight of turbine components and improve turbine thermal efficiency with a higher turbine inlet temperature (TIT). One of the technical issues of the CMC turbine vane is a relatively lower impact resistance than nickel based alloy turbine vanes. There are various previous works about impact resistance of CMCs, but there is little work that assumed actual engine conditions. The objective of this work was to verify the resistance of SiC/SiC CMC turbine vane to the impact phenomena that occur in the actual aircraft engine. The field damage survey was conducted on actual metal turbine vanes of commercial engines overhauled in IHI. The survey made it clear that the typical damage was less-than-0.127-mm-dent at the leading edge. In addition, the dropped weight impact test using the actual turbine airfoil which is made from a nickel based alloy was conducted at ambient temperature. The amount of energy required to make the dent of a certain size that was observed in actual metal turbine vanes was estimated. Then, the dropped weight impact test using the CMC test piece with a leading edge shape was conducted at the impact energy estimated by the metal turbine airfoil. The results showed that the failure mode of the CMC test piece was local damage with dents of a certain size and not a catastrophic failure mode. From this work, the damage to be assumed on CMC vane in actual aircraft engines was identified. As a future task, the effect of the damage to the fatigue capability of CMC turbine vanes needs to be investigated.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4000 ◽  
Author(s):  
Bing Liu ◽  
Jingkai Zhou ◽  
Xiaoyan Wen ◽  
Jianhua Guo ◽  
Xuanyu Zhang ◽  
...  

In this study, the impact resistance of coral concrete with different carbon fiber (CF) dosages subjected to drop-weight impact test was investigated. For this purpose, three concrete strength grades (C20, C30, C40) and six CF dosages (0.0%, 0.3%, 0.6%, 1.0%, 1.5%, and 2.0% by weight of the binder) were considered, and a total of 18 groups of carbon fibers reinforced coral concrete (CFRCC) were cast. For each group, eight specimens were tested following the drop-weight impact test suggested by CECS 13. Then, the two-parameter Weibull distribution theory was adopted to statistically analyze the variations in experimental results. The results indicated that the addition of CFs could transform the failure pattern from obvious brittleness to relatively good ductility and improve the impact resistance of coral concrete. Moreover, the impact resistance of CFRCC increases with the CF dosage increasing. The statistical analysis showed that the probability distribution of the blow numbers at the initial crack and final failure of CFRCC approximately follows the two-parameter Weibull distribution.


2014 ◽  
Vol 775-776 ◽  
pp. 296-301 ◽  
Author(s):  
Anderson de Paula Barbosa ◽  
Michel Picanço Oliveira ◽  
Giulio Rodrigues Altoé ◽  
Frederico Muylaert Margem ◽  
Sergio Neves Monteiro

The buriti (Muritia flexuosa) fiber are among the lignocellulosic fibers with apotential to be used as reinforcement of polymer composites. In recent years, the buriti fiber has been characterized for its properties as an engineering natural material. The toughness of buriti composites remains to be a evaluated. Therefore, the present work evaluated the toughness of epoxy composites reinforced with different amounts of buriti fibers by means of Charpy impact tests. It was found a significant increase in the impact resistance with the volume fraction of buriti fibers. Fracture observations by scanning electron microscopy revealed the mechanism responsible for this toughness behavior.


2020 ◽  
Vol 27 ◽  
pp. 37-41
Author(s):  
Josef Daniel ◽  
Jan Grossman ◽  
Vilma Buršíková ◽  
Lukáš Zábranský ◽  
Pavel Souček ◽  
...  

Coated components used in industry are often exposed to repetitive dynamic impact load. The dynamic impact test is a suitable method for the study of thin protective coatings under such conditions. Aim of this paper is to describe the method of dynamic impact testing and the novel concepts of evaluation of the impact test results, such as the impact resistance and the impact deformation rate. All of the presented results were obtained by testing two W-B-C coatings with different C/W ratio. Different impact test results are discussed with respect to the coatings microstructure, the chemical and phase composition, and the mechanical properties. It is shown that coating adhesion to the HSS substrate played a crucial role in the coatings’ impact lifetime.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 769 ◽  
Author(s):  
Adam Kurzawa ◽  
Dariusz Pyka ◽  
Krzysztof Jamroziak ◽  
Marcin Bajkowski ◽  
Miroslaw Bocian ◽  
...  

The paper presents the results of studies on the effects of shooting composite materials produced by pressure infiltration with the EN AW-7075 alloy as a matrix and reinforcement in the form of preforms made of α-Al2O3 particles. Composite materials were made with two reinforcement contents (i.e., 30% and 40% vol. of α-Al2O3 particles). The composites produced in the form of 12 mm thick plates were subjected to impact loads from a 7.62 × 39 FMJ M43 projectile fired from a Kalashnikov. The samples of composites with different contents of strengthening particles were subjected to detailed microscopic examination to determine the mechanism of destruction. The effect of a projectile impact on the microstructure of the material within the perforation holes was identified. There were radial cracks found around the puncture holes and brittle fragmentation of the front surfaces of the specimens. The change in the volume of the reinforcement significantly affected the inlet, puncture and outlet diameters. The observations confirmed that brittle cracking dominated the destruction mechanism and the crack propagation front ran mainly in the matrix material and along the boundaries of the α-Al2O3 particles. In turn, numerical tests were conducted to describe the physical phenomena occurring due to the erosion of a projectile hitting a composite casing. They were performed with the use of the ABAQUS program. Based on constitutive models, the material constants developed from the identification of material properties were modelled and the finite element was generated from homogenization in the form of a representative volume element (RVE). The results of microscopic investigations of the destruction mechanism and numerical investigations were combined. The conducted tests and analyses shed light on the application possibilities of aluminium composites reinforced with Al2O3 particles in the construction of add-on-armour protective structures.


Aerospace ◽  
2003 ◽  
Author(s):  
James A. Norris ◽  
Mehdi Ahmadian

Investigations on the design of controllable magneto-rheological (MR) fluid devices have focused heavily on low velocity and frequency applications. The extensive work in this area has led to a good understanding of MR fluid properties at low velocities and frequencies. However, the issues concerning MR fluid behavior in impact and shock applications are relatively unknown. To investigate MR fluid properties in this regime, a drop-tower was developed to subject MR fluid dampers to impulsive loads. The drop-tower design uses a guided drop-mass, which is released from variable heights to achieve different impact energies. The nominal drop-mass is 55 lb and additional weight may be added to reach a maximum of 500 lb. The nominal drop-mass of 55 lb was used throughout this study. Five drop-heights were investigated, 12, 24, 48, 72 and 96 inches, corresponding to impact velocities of 86, 127, 182, 224 and 260 in/s. Two fundamental MR damper configurations were tested, a single-stage, double-ended piston and a two-stage, mono-tube with nitrogen accumulator. Both dampers operate in the valve flow mode and contain MRF-128 TD fluid from Lord Corporation. The results indicate that the two damper configurations exhibit different force-displacement characteristics during impulsive loading. For the single-stage, double-ended damper, the peak force occurs close to the beginning of the impact. Conversely, the two-stage, mono-tube damper does not reach the peak force until after the nitrogen accumulator bottoms out. To verify this behavior, a theoretical model of the accumulator is derived and compared to the experimental data. The results also show that for a given impact velocity, the peak force does not depend on the current supplied to the damper. Since increasing the supply current causes an increase in the apparent yield stress, it was anticipated that the peak force would depend on the supply current as well. This disagreement is hypothesized to be the result of the fluid inertia preventing the fluid from accelerating fast enough to accommodate the rapid piston displacement. Thus, the peak force is primarily attributed to fluid compression, rather than the resistance to flow associated with the fluid passing through the magnetic field. It is important to note that this study is in its early stages and only preliminary conclusions are presented. Follow up publications will include additional results and modeling, and attempt to relate device design and MR fluid properties to dynamic behavior.


2020 ◽  
Vol 11 (4) ◽  
pp. 423-447 ◽  
Author(s):  
Hiroki Tamai ◽  
Sota Jinkawa ◽  
Yoshimi Sonoda

Medium-density polyethylene pipe has been widely introduced to low-pressure gas pipes because of its high flexibility and corrosion resistance. However, many third-party damages due to the impact of heavy equipment have been reported during the construction every year, thus, to prevent the third-party damage, materials such as high-density polyethylene and polyamide have been considered as the new gas pipe candidates. However, their impact resistance capacity under the third-party attack has not been clarified. In this study, static and impact loading experiments were conducted to compare load resistance capacities. As a result, it was revealed that the high-density polyethylene pipe and the polyamide pipe had higher static load capacity and impact resistance than the medium-density polyethylene pipe. By comparing the absorbed energy of the static test and the impact test and calculating the pseudo absorbed energy of the impact test, the evaluation formula judging the safer side of whether the penetration occurred was proposed. Furthermore, as one of the methods to protect the gas pipe, the protective effect of winding a sheet made of reinforced fiber and non-woven fabric was clarified.


2020 ◽  
Author(s):  
Hiroyuki Yamada ◽  
Kohei Tateyama ◽  
Shino Naruke ◽  
Hisashi Sasaki ◽  
Shinichi Torigata ◽  
...  

Abstract The destruction caused by ballistic ejecta from the phreatic eruptions of Mt. Ontake in 2014 and Mt. Kusatsu-Shirane (Mt. Moto-Shirane) in 2018 in Japan, which resulted in numerous casualties, highlighted the need for better evacuation facilities. In response, some mountain huts were reinforced with aramid fabric to convert them into shelters. However, a number of decisions must be made when working to increase the number of shelters, which depend on the location where they are to be built. In this study, we propose a method of using high-strength steel to reinforce wooden buildings for use as shelters. More specifically, assuming that ballistic ejecta has an impact energy of 9 kJ or more, as in previous studies, we developed a method that utilizes SUS304 and SS400 unprocessed steel plates based on existing impact test data. We found that SUS304 is particularly suitable for use as a reinforcing material because it has excellent impact energy absorption characteristics due to its high ductility as well as excellent corrosion resistance. With the aim of increasing the structural strength of steel shelters, we also conducted an impact test on a shelter fabricated from SS400 deck plates (i.e., steel with improved flexural strength provided by work-hardened trapezoidal corrugated plates). The results show that the shelter could withstand impact with an energy of 13.5 kJ (2.66 kg of simulated ballistic ejecta at 101 m/s on impact). In addition, from the result of the impact test using the roof-simulating structure, it was confirmed the impact absorption energy is further increased when artificial pumice as an additional protective layer installed on this structure. Observations of the shelter after the impact test show that there is still some allowance for deformation caused by projectile impact, which means that the proposed steel shelter holds promise, not only structurally, but also from the aspects of transportation and assembly. Hence, the usefulness of shelters that use steel was shown experimentally. However, shelter construction should be suitable for the target environment.


Sign in / Sign up

Export Citation Format

Share Document