scholarly journals Vitellogenesis in Blue Gourami is Accompanied by Brain Transcriptome Changes

Fishes ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 54 ◽  
Author(s):  
Gad Degani ◽  
Amir Alon ◽  
Akram Hajouj ◽  
Ari Meerson

The blue gourami (Trichogaster trichopterus) is a model for hormonal control of reproduction in Anabantidae fish, but also relevant to other vertebrates. We analyzed the female blue gourami brain transcriptome in two developmental stages: pre-vitellogenesis (PVTL) before yolk accumulation in the oocytes, and high vitellogenesis (HVTL) at the end of yolk accumulation in the oocytes. RNA sequencing of whole-brain transcriptome identified 34,368 unique transcripts, 23,710 of which could be annotated by homology with other species. We focused on the transcripts showing significant differences between the stages. Seventeen and fourteen annotated genes were found to be upregulated in PVTL and HVTL, respectively. Five nuclear transcripts, three of which contain the homeobox domain (ARX, DLX5, CERS6), were upregulated in PVTL. Additionally, several receptors previously known to be involved in reproduction were identified, and three of these, G-protein coupled receptor 54, Membrane progesterone receptor epsilon, and Gonadotropin-releasing hormone II receptor (GPCR, mPR, and GnRHR) were measured by quantitative RT-PCR in brain, pituitary, and ovary samples from PVTL and HVTL stage females. Of these, GPCR was highly expressed in the brain and pituitary as compared to the ovary in both PVTL and HVTL. GnRHR was highly expressed in the ovary compared to the brain and pituitary, and its levels in the brain were significantly higher in PVTL than HVTL. Brain mPR mRNA levels were likewise higher in PVTL than HVTL. In conclusion, this study details changes in the female blue gourami brain transcriptome through yolk accumulation in the oocytes and identifies key genes that may mediate this process.

2004 ◽  
Vol 52 (4) ◽  
pp. 389-402 ◽  
Author(s):  
P. Van As ◽  
C. Careghi ◽  
V. Bruggeman ◽  
O. M. Onagbesan ◽  
S. Van der Geyten ◽  
...  

Pit-1 is a pituitary-specific POU-domain DNA binding factor, which binds to and trans-activates promoters of growth hormone- (GH), prolactin- (PRL) and thyroid stimulating hormone beta- (TSHβ) encoding genes. Pit-1 has been identified in several mammalian and avian species. Thyrotropin-releasing hormone (TRH) is located in the hypothalamus and it stimulates TSH, GH and PRL release from the pituitary gland. In the present study, we successfully developed a competitive RT-PCR for the detection of Pit-1 expression in the chicken pituitary, that was sensitive enough to detect picogram levels of Pit-1 mRNA. Applying this method, the effect of TRH injections on Pit-1 mRNA expression was determined in the pituitary of chick embryos and growing chicks. In both 18-day-old embryos and 10-day-old male chicks the Pit-1 mRNA expression was significantly increased following TRH injection, thereby indicating that the stimulatory effects of TRH on several pituitary hormones is mediated via its effect on Pit-1 expression. Therefore, a semi-quantitative RT-PCR method was used to detect possible changes in GH levels. TRH affected the GH mRNA levels at both developmental stages. These results, combined with the data on Pit-1 mRNA expression, indicate that Pit-1 has a role in mediating the stimulatory effects of TRH on pituitary hormones like GH.


Endocrinology ◽  
2010 ◽  
Vol 151 (1) ◽  
pp. 358-368 ◽  
Author(s):  
Mark A. Edson ◽  
Yi-Nan Lin ◽  
Martin M. Matzuk

Abstract Through in silico subtraction and microarray analysis, we identified mouse Gpr149, a novel, oocyte-enriched transcript that encodes a predicted orphan G-protein-coupled receptor (GPR). Phylogenetic analysis of GPR149 from fish to mammals suggests that it is widely conserved in vertebrates. By multitissue RT-PCR analysis, we found that Gpr149 is highly expressed in the ovary and also in the brain and the digestive tract at low levels. Gpr149 levels are low in newborn ovaries but increase throughout folliculogenesis. In the ovary, we found that granulosa cells did not express Gpr149, whereas germinal vesicle and meiosis II stage oocytes showed high levels of Gpr149 expression. After fertilization, Gpr149 expression declined, becoming undetectable by the two-cell stage. To study the function of GPR149 in oocyte growth and maturation, we generated Gpr149 null mice. Surprisingly, Gpr149 null mice are viable and have normal folliculogenesis, but demonstrate increased fertility, enhanced ovulation, increased oocyte Gdf9 mRNA levels, and increased levels of FSH receptor and cyclin D2 mRNA levels in granulosa cells. Thus, Gpr149 null mice are one of the few models with enhanced fertility, and GPR149 could be a target for small molecules to enhance fertility in the assisted reproductive technology clinic.


2001 ◽  
Vol 169 (2) ◽  
pp. 361-371 ◽  
Author(s):  
C Roth ◽  
M Schricker ◽  
M Lakomek ◽  
A Strege ◽  
I Heiden ◽  
...  

To address whether gonadotropin-releasing hormone (GnRH) regulates its own expression and the expression of its receptor in the hypothalamus and ovary, we treated five groups of prepubertal/peripubertal female rats from postnatal days 25-36 with either the GnRH agonist triptorelin (TRIP) or the GnRH antagonist cetrorelix (CET), each 10 or 100 microgram/day, or a placebo. We compared their effects regarding pubertal development, serum gonadotropins and the expression of GnRH and GnRH-receptor in the hypothalamus, pituitary, ovary and uterus. Onset of puberty was determined by vaginal opening, and expression levels of GnRH and GnRH-receptor were determined using either quantitative real-time PCR or competitive RT-PCR. Onset of puberty was retarded by both analogs but CET (100 microgram/day) inhibited while TRIP (10 and 100 microgram/day) stimulated serum gonadotropins (P<0.05). The expression of GnRH in the preoptic area did not show significant differences among the treatment groups but ovarian GnRH mRNA levels were significantly stimulated by CET (100 microgram/day). GnRH mRNA could not be detected in the uterus by either real-time PCR or competetive RT-PCR. The GnRH-receptor expression in the hypothalamus (preoptic area and mediobasal hypothalamus) did not vary among any of the groups, whereas in the pituitary GnRH-receptor mRNA levels were stimulated by TRIP (10 microgram/day) but inhibited by CET (100 microgram/day). In contrast, in the ovary GnRH-receptor mRNA levels were inhibited by both TRIP (100 microgram/day) and CET (100 microgram/day). Interestingly, the GnRH-receptor was even expressed in the uterus where it was strongly stimulated by both CET and TRIP in a dose-related manner. This shows that in addition to their different pituitary effects, the GnRH analogs cetrorelix and triptorelin exert different actions at the hypothalamic, ovarian and uterine level. This study also demonstrates an organ-specific regulation of GnRH and GnRH-receptor gene expression which is likely part of a local autoregulatory system. We conclude that the ovarian and uterine effects of GnRH analogs must be considered in addition to their known pituitary effects when deciding which GnRH analog is most suitable for treating precocious puberty.


2019 ◽  
Author(s):  
Tian Tian ◽  
Guang Qiao ◽  
Zhuang Wen ◽  
Bin Deng ◽  
Zhilang Qiu ◽  
...  

Abstract Background Rain-shelter covering is widely applied during cherry fruit development in subtropical monsoon climates with the aim of decreasing the dropping and cracking of fruit caused by excessive rainfall. Under rain-shelter conditions, the characteristics of the leaves and fruit of the cherry plant may adapt to the changes in the microclimate. However, the molecular mechanism underlying such adaptation remains unclear, although clarifying it may be helpful for improving the yield and quality of cherry under rain-shelter conditions.Results To better understand the regulation and adaptive mechanism of cherry under rain-shelter covering, 38,621 and 3,584 differentially expressed genes were identified with the combination of Illumina HiSeq and single-molecule real-time sequencing in leaves and fruits, respectively, at three developmental stages. Among these, key genes, such as those encoding photosynthetic-antenna proteins ( Lhca and Lhcb ) and photosynthetic electron transporters (PsbP , PsbR , PsbY , and PetF ), were upregulated following the application of rain-shelter covering, leading to increased efficiency of light utilization. The mRNA levels of genes involved in carbon fixation, namely, rbcL and rbcS , were clearly increased in comparison to those under shelter-free conditions, giving rise to improved CO 2 utilization. Furthermore, the transcription levels of genes involved in chlorophyll ( hemA , hemN , and chlH ) and carotenoid synthesis ( crtB , PDS , crtISO , and lcyB ) in the sheltered leaves peaked earlier than those in the unsheltered leaves, thereby promoting organic matter accumulation in leaves. Remarkably, the expression levels of key genes involved in the metabolic pathways of phenylpropanoid ( PAL , C4H , and 4CL ) and flavonoid ( CHS , CHI , F3’H , DFR , and ANS ) in the sheltered fruits were also upregulated earlier than those in the shelter-free fruits, conducive to an increase in anthocyanin content in the fruits.Conclusions According to the physiological indicators and transcriptional expression levels of related genes, the adaptive regulation mechanism of cherry plants was systematically revealed. These findings can help understand the effect of rain-shelter covering on Chinese cherry cultivation in rainy regions.


2019 ◽  
Author(s):  
Tian Tian ◽  
Guang Qiao ◽  
Zhuang Wen ◽  
Bin Deng ◽  
Zhilang Qiu ◽  
...  

Abstract Background: Rain-shelter covering is widely applied during cherry fruit development in subtropical monsoon climates with the aim of decreasing the dropping and cracking of fruit caused by excessive rainfall. Under rain-shelter covering, the characteristics of the leaves and fruit of the cherry plant may adapt to the changes in the microclimate. However, the molecular mechanism underlying such adaptation remains unclear, although clarifying it may be helpful for improving the yield and quality of cherry under rain-shelter covering. Results: To better understand the regulation and adaptive mechanism of cherry under rain-shelter covering, 38,621 and 3,584 differentially expressed genes were identified with a combination of Illumina HiSeq and single-molecule real-time sequencing in leaves and fruits, respectively, at three developmental stages. Among these, key genes, such as those encoding photosynthetic-antenna proteins (Lhca and Lhcb) and photosynthetic electron transporters (PsbP, PsbR, PsbY, and PetF), were up-regulated following the application of rain-shelter covering, leading to increased efficiency of light utilization. The mRNA levels of genes involved in carbon fixation, namely, rbcL and rbcS, were clearly increased compared with those under shelter-free conditions, resulting in improved CO2 utilization. Furthermore, the transcription levels of genes involved in chlorophyll (hemA, hemN, and chlH) and carotenoid synthesis (crtB, PDS, crtISO, and lcyB) in the sheltered leaves peaked earlier than those in the unsheltered leaves, thereby promoting organic matter accumulation in leaves. Remarkably, the expression levels of key genes involved in the metabolic pathways of phenylpropanoid (PAL, C4H, and 4CL) and flavonoid (CHS, CHI, F3’H, DFR, and ANS) in the sheltered fruits were also up-regulated earlier than of those in the unsheltered fruits, conducive to an increase in anthocyanin content in the fruits. Conclusions: According to the physiological indicators and transcriptional expression levels of the related genes, the adaptive regulation mechanism of cherry plants was systematically revealed. These findings can help understand the effect of rain-shelter covering on Chinese cherry cultivation in rainy regions.


Zygote ◽  
2021 ◽  
pp. 1-7
Author(s):  
Huiliang Xue ◽  
Jinhui Xu ◽  
Lei Chen ◽  
Lei Zhao ◽  
Ming Wu ◽  
...  

Summary The purpose of this study was to investigate the effect of RFRP-3 synchronized with photoperiods on regulating the seasonal reproduction of striped hamsters. The striped hamsters were raised separately under long-day (LD; 16 h light/8 h dark), medium-day (MD; 12 h light/12 h dark) or short-day (SD; 8 h light/16 h dark) conditions for 8 weeks. RFRP-3 and gonadotropin-releasing hormone (GnRH) mRNA levels in the hypothalamus, testis or ovaries in three groups were detected using reverse transcription polymerase chain reaction (RT-PCR). Melatonin (MLT), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) concentrations in serum were detected using enzyme-linked immunosorbent assay (ELISA). The correlation between RFRP-3 and GnRH mRNA and FSH and LH concentrations was also analyzed. MLT negatively regulated the expression of RFRP-3. Significant differences for RFRP-3 mRNA existed in the three groups, which positively correlated with the GnRH and the FSH and LH concentrations. RFRP-3 mRNA levels in the hypothalamus were significantly higher than those in ovaries or testis. RFRP-3 levels in the hypothalamus were significantly lower in female than in male under SD conditions, while those in ovaries were significantly higher than those in testes under LD conditions. MLT decreased RFRP neuron activity, and RFRP-3 regulated the reproduction of striped hamsters.


Genes ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 230 ◽  
Author(s):  
Iga Wasilewska ◽  
Rishikesh Kumar Gupta ◽  
Oksana Palchevska ◽  
Jacek Kuźnicki

Zebrafish are well-suited for in vivo calcium imaging because of the transparency of their larvae and the ability to express calcium probes in various cell subtypes. This model organism has been used extensively to study brain development, neuronal function, and network activity. However, only a few studies have investigated calcium homeostasis and signaling in zebrafish neurons, and little is known about the proteins that are involved in these processes. Using bioinformatics analysis and available databases, the present study identified 491 genes of the zebrafish Calcium Toolkit (CaTK). Using RNA-sequencing, we then evaluated the expression of these genes in the adult zebrafish brain and found 380 hits that belonged to the CaTK. Based on quantitative real-time polymerase chain reaction arrays, we estimated the relative mRNA levels in the brain of CaTK genes at two developmental stages. In both 5 dpf larvae and adult zebrafish, the highest relative expression was observed for tmbim4, which encodes a Golgi membrane protein. The present data on CaTK genes will contribute to future applications of zebrafish as a model for in vivo and in vitro studies of Ca2+ signaling.


2011 ◽  
pp. 941-950 ◽  
Author(s):  
S. AMBATI ◽  
J. DUAN ◽  
D. L. HARTZELL ◽  
Y.-H. CHOI ◽  
M. A. DELLA-FERA ◽  
...  

GIP (glucose dependent insulinotrophic polypeptide), originally identified as an incretin peptide synthesized in the gut, has recently been identified, along with its receptors (GIPR), in the brain. Our objective was to investigate the role of GIP in hypothalamic gene expression of biomarkers linked to regulating energy balance and feeding behavior related neurocircuitry. Rats with lateral cerebroventricular cannulas were administered 10 μg GIP or 10 μl artificial cerebrospinal fluid (aCSF) daily for 4 days, after which whole hypothalami were collected. Real time Taqman™ RT-PCR was used to quantitatively compare the mRNA expression levels of a set of genes in the hypothalamus. Administration of GIP resulted in up-regulation of hypothalamic mRNA levels of AVP (46.9±4.5 %), CART (25.9±2.7 %), CREB1 (38.5±4.5 %), GABRD (67.1±11 %), JAK2 (22.1±3.6 %), MAPK1 (33.8±7.8 %), NPY (25.3±5.3 %), OXT (49.1±5.1 %), STAT3 (21.6±3.8 %), and TH (33.9±8.5 %). In a second experiment the same set of genes was evaluated in GIPR-/- and GIPR+/? mice to determine the effect of lack of GIP stimulation on gene expression. In GIPR-/- mice expressions of the following genes were down-regulated: AVP (27.1±7.5 %), CART (28.3±3.7 %), OXT (25.2±5.8 %), PTGES (23.9±4.5 %), and STAT3 (8.8±2.3 %). These results suggest that AVP, CART, OXT and STAT3 may be involved in energy balance-related hypothalamic circuits affected by GIP.


2019 ◽  
Vol 19 (2) ◽  
pp. 120-126
Author(s):  
J. Wei ◽  
Y. Yu ◽  
Y. Feng ◽  
J. Zhang ◽  
Q. Jiang ◽  
...  

Background: Homocysteine (Hcy) has been suggested as an independent risk factor for atherosclerosis. Apolipoprotein M (apoM) is a constituent of the HDL particles. The goal of this study was to examine the serum levels of homocysteine and apoM and to determine whether homocysteine influences apoM synthesis. Methods: Serum levels of apoM and Hcy in 17 hyperhomocysteinemia (HHcy) patients and 19 controls were measured and their correlations were analyzed. Different concentrations of homocysteine (Hcy) and LY294002, a specific phosphoinositide 3- kinase (PI3K) inhibitor, were used to treat HepG2 cells. The mRNA levels were determined by RT-PCR and the apoM protein mass was measured by western blot. Results: We found that decreased serum apoM levels corresponded with serum HDL levels in HHcy patients, while the serum apoM levels showed a statistically significant negative correlation with the serum Hcy levels. Moreover, apoM mRNA and protein levels were significantly decreased after the administration of Hcy in HepG2 cells, and this effect could be abolished by addition of LY294002. Conclusions: resent study demonstrates that Hcy downregulates the expression of apoM by mechanisms involving the PI3K signal pathway.


Sign in / Sign up

Export Citation Format

Share Document