scholarly journals Characterization and Modeling of the Viscoelastic Behavior of Hydrocolloid-Based Films Using Classical and Fractional Rheological Models

Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 418
Author(s):  
David Ramirez-Brewer ◽  
Oscar Danilo Montoya ◽  
Jairo Useche Vivero ◽  
Luis García-Zapateiro

Hydrocolloid-based films are a good alternative in the development of biodegradable films due to their properties, such as non-toxicity, functionality, and biodegradability, among others. In this work, films based on hydrocolloids (gellan gum, carrageenan, and guar gum) were formulated, evaluating their dynamic rheological behavior and creep and recovery. Maxwell's classical and fractional rheological models were implemented to describe its viscoelastic behavior, using the Vortex Search Algorithm for the estimation of the parameters. The hydrocolloid-based films showed a viscoelastic behavior, where the behavior of the storage modulus (G') and loss modulus (G'') indicated a greater elastic behavior (G' > G''). The Maxwell fractional model with two spring-pots showed an optimal fit of the experimental data of storage modulus (G') and loss modulus (G'') and a creep compliance (J) (Fmin < 0.1 and R2 > 0.98). This shows that fractional models are an excellent alternative for describing the dynamic rheological behavior and creep recovery of films. These results show the importance of estimating parameters that allow for the dynamic rheological and creep behaviors of hydrocolloid-based films for applications in the design of active films because they allow us to understand their behavior from a rheological point of view, which can contribute to the design and improvement of products such as food coatings, food packaging, or other applications containing biopolymers.

2020 ◽  
Vol 71 (5) ◽  
pp. 193-200
Author(s):  
Maricel Danu ◽  
Bogdana Simionescu ◽  
Constanta Ibanescu ◽  
Sorin Alexandru Ibanescu

Chitosan and collagen are naturally-derived materials with multiple applications, but their mixtures present phase separation phenomena. This shortcoming in relation to the mixture processing and, obviously, the applications can be overcome by choosing the appropriate composition. Rheological methods have been used to study collagen - chitosan mixtures to highlight their compatibility conditions in solution. Through the use of oscillatory rheometry, the viscoelastic behavior of collagen-chitosan mixtures in 0.5M acetic acid solution was analysed. The storage modulus (G`) was used to describe the elasticity of the material, while the loss modulus (G`) provided information on the viscous behavior of the mixtures.


2020 ◽  
Vol 16 (4) ◽  
pp. 462-469
Author(s):  
Zhaleh Sheidaei ◽  
Bahareh Sarmadi ◽  
Seyede M. Hosseini ◽  
Fardin Javanmardi ◽  
Kianoush Khosravi-Darani ◽  
...  

<P>Background: The high amounts of fat, sugar and calorie existing in dairy desserts can lead to increase the risk of health problems. Therefore, the development of functional and dietary forms of these products can help the consumer health. </P><P> Objective: This study aims to investigate the effects of &#954;-carrageenan, modified starch and inulin addition on rheological and sensory properties of non-fat and non-added sugar dairy dessert. </P><P> Methods: In order to determine the viscoelastic behavior of samples, oscillatory test was carried out and the values of storage modulus (G′), loss modulus (G″), loss angle tangent (tan &#948;) and complex viscosity (&#951;*) were measured. TPA test was used for analysis of the desserts’ texture and textural parameters of samples containing different concentrations of carrageenan, starch and inulin were calculated. </P><P> Results: All treatments showed a viscoelastic gel structure with the storage modulus higher than the loss modulus values. Increasing amounts of &#954;-carrageenan and modified starch caused an increase in G′ and G″ as well as &#951;* and a decrease in tan &#948;. Also, firmness and cohesiveness were enhanced. The trained panelists gave the highest score to the treatment with 0.1% &#954;-carrageenan, 2.5% starch and 5.5% inulin (sucralose as constant = 0.25%) and this sample was the best treatment with desirable attributes for the production of non-fat and non-added sugar dairy dessert. </P><P> Conclusion: It can be concluded that the concentration of &#954;-carrageenan and starch strongly influenced the rheological and textural properties of dairy desserts, whereas the inulin content had little effect on these attributes.</P>


2013 ◽  
Vol 815 ◽  
pp. 639-644 ◽  
Author(s):  
Pei Ying Liu ◽  
Zhi Hong Jiang

Wood-plastic composite is a kind of viscoelastic materials. This paper presents the dynamic viscoelastic behavior of WPCs at different temperature, frequency and bamboo flours levels. The storage modulus decreased with the rise of temperature, the loss modulus and tanδ increased as temperature increased but decreased after reaching the peak. Frequency had a little influence on storage modulus and loss modulus, but the glass transition temperature increased with the increase of frequency, while the tanδ decreased. The glass transition temperature of this kind WPCs is about 85°C. The addition of bamboo flours had a positive effect on the dynamic viscoelastic behavior. From the results above, the activation energy of the WPCs was measured using an Arrhenius relationship to investigate the interphase between the wood and plastic.


2019 ◽  
Vol 285 ◽  
pp. 380-384
Author(s):  
Gerardo Sanjuan-Sanjuan ◽  
Ángel Enrique Chavez-Castellanos

The subject of this work is to investigate viscoelastic properties such as loss modulus (G ́ ́), storage modulus (G ́), complex shear modulus (G*), complex viscosity (η*) and loss angle () at different temperatures by means of a small-amplitude oscillatory test. These properties allow to provide information about materials structure. For this purpose, we employed a tin-lead alloy (Sn-15%Pb) which exhibits a similar microstructure to aluminum alloys and is the classic alloy for semisolid thixotropic studies. It is interesting to note that the Sn-15%Pb alloy exhibits a slightly decrease in storage modulus (G ́) over the entire frequency (0.01-10Hz) at high temperatures, showing its viscoelastic behavior. In addition, a detailed analysis of master curves (oscillatory tests) was made to relate the semisolid microstructure (solid fraction) with the plateau modulus (GN0) which is directly related with both molecular weight or percolation threshold in polymer and gels science respectively.


2019 ◽  
Vol 233 (8) ◽  
pp. 1145-1159 ◽  
Author(s):  
Luqman Ali Shah ◽  
Rida Javed ◽  
Abbas Khan ◽  
Irum Bibi ◽  
Noor Saeed Khattak ◽  
...  

Abstract The main objective of this research work is to explore the complete and extensive rheological studies of cationic poly (3-acrylamidopropyl trimethyl ammonium chloride) P(APTMACl) hydrogel, prepared by free radical polymerization method at room temperature. Hydrogel was characterized by various techniques such as SEM, FTIR and TGA, whereas rheological properties of synthesized hydrogel were obtained using frequency sweep and frequency curve analysis in different temperature range. Storage modulus (G′) and loss modulus (G′′) were investigated as a function of angular frequencies and shear stress at various temperatures. Rheological models like Bingham plastic model, modified Bingham and Ostwald power law were applied to understand the rheological performance of the gels. Flow curves obtained at different temperatures indicate that P(APTMACl) hydrogel shows a non-Newtonian pseudo plastic behavior. All results concluded that rheology is a powerful tool to study the complete visco-elastic behavior of polymer hydrogel for multiple applications.


DYNA ◽  
2016 ◽  
Vol 83 (196) ◽  
pp. 119-123 ◽  
Author(s):  
Laura Sofia Torres Valenzuela ◽  
Alfredo Adolfo Ayala-Aponte ◽  
Liliana Serna

<p>Foods may have both solid and liquid properties, and are described as viscoelastic products. Knowledge on such viscoelastic features is very useful for quality control and/or food stability. The purpose of this work was to evaluate the effect of the application of 1-MCP on the viscoelastic properties of minimally processed yellow pitahaya during refrigeration storage, by using a stress relaxation test. Viscoelastic parameters were determined through Generalized Maxwell and Peleg’s rheologic models. Both rheological models proved suitable to predict viscoelastic behavior; however, Peleg’s model better described this behavior. Samples of treated and non-treated pitahaya with 1- MCP decreased their elastic behavior (firmness decrease) during storage. Fruit treated with 1-MCP showed a greater elastic component than non-treated samples during storage. These two rheological models were suitable for predicting the viscoelastic behavior, however.</p>


2011 ◽  
Vol 236-238 ◽  
pp. 1322-1325 ◽  
Author(s):  
Yan Jun Tang ◽  
You Ming Li ◽  
Guo Xin Xue ◽  
Yu Zhao ◽  
Xiu Mei Zhang ◽  
...  

The focus of this study is to investigate the effect of carboxylated styrene-butadiene rubber (SBR) latex on the dynamic rheologcial properties of paper coating suspensions modified with nanosized particles. The elastic storage modulus G′ and the viscid loss modulus G′′ are used to evaluate the dynamic rheologcial properties of paper coating suspensions. The effects of different amount carboxylated styrene-butadiene rubber latex on the flow parameters of paper coating suspensions are comparatively presented. It is shown that the dynamic elastic storage modulus G′ and viscid loss modules G′′ of paper coating suspensions increase with the SBR content change from 13% to 18%. The dynamic rheologcial properties are related to the strength of the network structure of paper coating suspensions. It is also found that the elastic storage modulus G′ of paper coating suspensions is larger than viscid loss modulus G′′, which indicates that paper coating suspensions in this investigation all behave like a viscoelastic solid.


2020 ◽  
pp. 088532822097947
Author(s):  
Piyush Sunil Agarwal ◽  
Suruchi Poddar ◽  
Neelima Varshney ◽  
Ajay Kumar Sahi ◽  
Kiran Yellappa Vajanthri ◽  
...  

The primary goal of this study is to highlight the rheological and mechanical properties of a new blend composed of naturally-derived hydrogel materials- psyllium husk (PH) and gelatin (G) for its potential use in three-dimensional (3D) printing technology. The mixtures were prepared at various weight ratios of 100PH, 75PH + 25G and 50PH + 50G. A suitable selection of the printable ink was made based on the preliminary screening steps of manual filament drop test and layer stacking by 3D printing. Printing of the common features such as hexagon and square grids helped evaluating shape fidelity of the chosen ink. Although 50PH + 50G blend was found meeting most of the criteria for an ideal 3D printable ink, rheological and mechanical characterizations have been performed for all the ratios of polymeric blends. This study documents the correlation between various factors of rheology that should be taken into account while categorizing any biomaterial as a printable ink. Yield stress was measured as 18.59 ± 4.21 Pa, 268.74 ± 13.56 Pa and 109.16 ± 9.85 Pa for 50PH + 50G, 75PH + 25G and 100PH, respectively. Similarly, consistency index (K) and flow index (n) were calculated using the power law equation and found as 49.303 ± 4.17, 530.59 ± 10.92, 291.82 ± 10.53 and 0.275 ± 0.04, 0.05 ± 0.005, 0.284 ± 0.04 for 50PH + 50G, 75PH + 25G and 100PH, respectively. The loss modulus (G″) was observed dominating over storage modulus (G′) for 50PH + 50G, that depicts its liquid-like property; whereas storage modulus (G′) was found dominating in case of 75PH + 25G and 100PH, indicating their solid-like characteristics. In addition, the loss tangent value (tan δ) of 50PH + 50G was observed exceeding unity (1.05), supporting its plastic behavior, unlike 75PH + 25G (0.5) and 100PH (0.33) whose loss tangent values were estimated less than unity revealing their elastic behavior. Also, 50PH + 50G was found to have the highest mechanical strength amongst the three blends with a Young’s modulus of 9.170 ± 0.0881 kPa.


2020 ◽  
Vol 16 (4) ◽  
Author(s):  
Nan Zhao ◽  
Bo-wen Li ◽  
Ying-dan Zhu ◽  
Dong Li ◽  
Li-jun Wang

AbstractThe stress relaxation, creep-recovery, temperature, and frequency sweep tests were performed within the linear viscoelastic region by using a dynamic mechanical analyzer to investigate the viscoelastic characteristic of oat grain. The result showed that 5-element Maxwell and Burgers model were able to describe viscoelastic behaviors better. The relaxation stress decreased with the increasing moisture content from 6.79 to 23.35%, while the creep strain increased as well as the final percentage recovery decreased from 58.61 to 32.50%. In frequency sweep, storage modulus increased with the increasing frequency. In temperature sweep, there was a clear turning point in storage modulus, loss modulus, and tan delta curves with increasing temperature. The turning value of 167.47, 147.44, 134.27, 132.41, 110.28, and 92.62 °C detected in the tan delta were regarded as the best glass transition temperatures. This temperature was found to be lower than gelatinization heating temperature and decrease with the increase of moisture content. The crystalline structure of oat exhibited a typical A-type pattern and corresponding crystallinity increased from 22.03 to 31.86% with increasing moisture content. The scanning electron microscopy (SEM) micrograph of oat section was found that the size and adhesive effect of starch granules increased due to hydration.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 873
Author(s):  
Huaiwen Yang ◽  
Chai-Chun Tsai ◽  
Jung-Shiun Jiang ◽  
Chi-Chung Hua

Modifying the consistency of a given edible fluid matrix by incorporating food thickeners is a common nursing remedy for individuals with dysphagia when adequate water consumption is a concern. As apple pectin (AP) offers nutraceutical benefits, properly formulated apple pectin (AP)-based thickeners featuring xanthan gum (XG) can be superior candidates for preparation of dysphagia-friendly matrices (DFMs). Our recruited DFMs exhibit fluid-like behavior (loss modulus > storage modulus, G” > G’) at lower AP concentrations (2 and 5%, w/w); they turn into weak/critical gels (G’ ≈ G”) as the concentration becomes higher (9%). In contrast, XG-DFMs display gel-like attributes with G’ > G”, even at rather low concentrations (<1%) and become more resistant to sugar, Na+, and Ca2+ modifications. The composite matrix of AP1.8XG0.2 (constraint at 2%) exhibits a confined viscosity of 278 ± 11.7 mPa∙s, which is considered a DFM, in comparison to only AP- or XG-thickened ones. The hardness measurements of XG0.6 and AP1.2XG0.8 are 288.33 ± 7.506 and 302.00 ± 9.849 N/m2, respectively, which potentially represent a promising formulation base for future applications with DFMs; these textural values are not significantly different from a commercially available product (p > 0.05) for dysphagia nursing administrations.


Sign in / Sign up

Export Citation Format

Share Document